

# FANS Interoperability Team Meeting (FIT/18)

# Honolulu, Hawaii, USA, 22-23 March 2011

### Agenda Item 4 – Working Papers

### A388 Performance Update

#### Presented by Airways New Zealand

## **SUMMARY**

In September 2010 a FANS1/A performance review was completed on A388 operations in NZZO. The review is available as an attachment to WP #2. This paper provides an update on observed A388 performance during January and February 2011.

### 1. INTRODUCTION

- 1.1. This paper provides information on the current performance of the QANTAS A388 fleet operating on UPR routes between Australia and the United States.
- 1.2. Data from the Oakland (KZAK) and Auckland (NZZO) FIR obtained during the period January February 2011 was analysed for this paper. The analysis is in accordance with the guidelines of the GOLD Appendix D.
- 1.3. Airways would like to acknowledge the FAA for making KZAK performance data available for this analysis.

#### 2. DISCUSSION

#### **CPDLC** Performance

- 2.1 The fleet meets RCP240 requirements for the application of reduced separations when using SATCOM. The issue regarding the use of HFDL for CPDLC uplinks reported in the September 2010 review has been resolved and no HFDL was used in the 306 CPDLC intervention transactions analysed for this paper.
- 2.2. The results of the analysis are tabulated in Figure 2-1 below. The fleet betters the 99.9% requirements for both Required Communications Technical Performance (RCTP) and Required Communications Performance (RCP) with 100% of the transactions completed within the required time period. Pilot Operational Response Time (PORT) meets the requirement that 95% of responses are sent within 60 seconds. The performance observed sees 98% of the responses sent within 60 seconds which is similar to the 97% observed in the September review.



| A388 Datalink Performance<br>KZAK NZZO FIR January February 2011 |        |                |  |  |  |  |  |
|------------------------------------------------------------------|--------|----------------|--|--|--|--|--|
| CPDLC SATCOM # 306                                               |        |                |  |  |  |  |  |
| ACTP RCP240                                                      | 120sec | <b>99.67</b> % |  |  |  |  |  |
|                                                                  | 150sec | 100.00%        |  |  |  |  |  |
| ACP RCP240                                                       | 180sec | 100.00%        |  |  |  |  |  |
|                                                                  | 210sec | 100.00%        |  |  |  |  |  |
| PORT                                                             | 60sec  | 98.04%         |  |  |  |  |  |
| ADS-C SATCOM # 4209                                              |        |                |  |  |  |  |  |
| RSP 180                                                          | 90sec  | 99.67%         |  |  |  |  |  |
|                                                                  | 180sec | 99.95%         |  |  |  |  |  |
| ADS-C SATCOM + HF # 4443                                         |        |                |  |  |  |  |  |
| RSP 180                                                          | 90sec  | 98.90%         |  |  |  |  |  |
|                                                                  | 180sec | 99.73%         |  |  |  |  |  |
| ADS-C HF # 234                                                   |        |                |  |  |  |  |  |
| RSP 180                                                          | 90sec  | 85.04%         |  |  |  |  |  |
|                                                                  | 180sec | 95.73%         |  |  |  |  |  |

# Figure 2-1 A388 performance KZAK NZZO FIR Jan-Feb 2011

2.3. Graphs for RCP240 Actual Communications Technical Performance (ACTP) and Actual Communications Performance (ACP) are included in Appendix A to this paper.

## ADS-C Performance

- 2.4. The fleet meets the RSP180 requirements for the application of reduced separations when using SATCOM. The results are tabulated in Figure 2-1 above with 99.95% of the 4209 ADS-C reports analysed received within the 99.9% 180 second requirement.
- 2.5. The A388 operates using HFDL in a "next-on-busy" mode and HFDL was used for 234 ADS-C reports during the review period. An analysis of the "pure" HFDL transactions falls well under the RSP180 requirements. However, if the SATCOM and HFDL reports are combined performance meets the RSP180 normal operations 95% 90 second requirement and is very close to meeting the 99.9% 180 second requirement with 99.7% of reports delivered within the 180 second requirement.
- 2.6. Graphs for RSP180 Actual Surveillance Performance are included in Appendix A to this paper.

## ADS-C Delay Analysis

2.7. An analysis of all messages delivered in more than 90 seconds shows that 80% of the 50 delayed reports fall near to the NZZO FIR boundary where it would be normal for both the adjacent FIR and NZZO to have established ADS-C contracts. A



2.8. An analysis of 5 delayed ADS-C waypoint reports received at both KZAK and NZZO is depicted in Figure 2-2 below. One of each report pair is delivered via SATCOM the other via HFDL. There are significant delays evident in the reports that are delivered by HFDL. Previous analysis of the same waypoint report delivered to multiple FIR by SATCOM has shown that there is around a 15 second latency delay between reports. This is significantly less than the delays seen with HFDL.

| FIR  | Date     | RGS  | Report<br>Type | Lat       | Lon      | Latency<br>(Seconds) |
|------|----------|------|----------------|-----------|----------|----------------------|
| KZAK | 20110124 | H16  | WPR            | -4.994000 | -161.492 | 405                  |
| NZZO | 20110124 | POR1 | WPR            | -4.994000 | -161.492 | 15                   |
| KZAK | 20110124 | H16  | WPR            | -5.99527  | -162.993 | 259                  |
| NZZO | 20110124 | POR1 | WPR            | -5.99527  | -162.993 | 11                   |
| KZAK | 20110126 | POR1 | WPR            | -4.99552  | -160.744 | 13                   |
| NZZO | 20110126 | H09  | WPR            | -4.99552  | -160.744 | 178                  |
| KZAK | 20110215 | POR1 | WPR            | -4.99535  | -163.962 | 11                   |
| NZZO | 20110215 | H02  | WPR            | -4.99535  | -163.962 | 157                  |
| NZZO | 20110124 | POR1 | WPR            | -3.99628  | -159.994 | 13                   |
| KZAK | 20110124 | H16  | WPR            | -3.99628  | -159.994 | 151                  |

# Figure 2-1 Latency delays for the same ADS-C Waypoint Report to different FIR

2.9. It seems that the majority of delays observed are with waypoint reports near FIR boundary where multiple FIR have contracts. This was also observed in the September report.

## **3. ACTION BY THE MEETING**

3.1. The meeting is invited to:

- a) Note the improvement in A388 performance observed during January and February 2011 in the KZAK and NZZO FIR.
- b) Note the delays observed in the delivery of the same ADS-C report to different FIR using mixed media.

## **Appendix A : Additional performance data**





Appendix A: Additional Performance Data





#### Twenty Fifth Meeting of the Informal South Pacific Air Traffic Services Co-ordinating Group (ISPACG/25)







Figure A-3 A388 ADS-C SATCOM Downlink Latency





Figure A-4 A388 ADS-C SATCOM + HF Downlink Latency





Figure A-5 A388 ADS-C HF Downlink Latency



Figure A-6 A388 ADS-C Delayed Reports near FIR Boundary