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1 Introduction and scenario

1.1 When two airplanes are flying in the same direction, at different flight levels of the

same oceanic route, it sometimes happens that one of them needs to climb or descend through the

flight level of the other.  For example, the airplane at the lower flight level may find that it has

burned enough fuel to enable it to fly more efficiently at a higher altitude.  It could also happen that

one of the pilots needs to change his flight level in order to avoid turbulence.

1.2 If the longitudinal separation between the airplanes exceeds the minimum distance

or minimum time specified for aircraft assigned to the same route and flight level, then the

responsible air traffic controller can approve a request for a change of altitude without any concern

that the two airplanes will have insufficient longitudinal separation during the period in which they

have vertically overlapping positions.  In recent years it has also been suggested that such altitude

changes should be permitted with a smaller minimum longitudinal separation, since the period of

vertical overlap is relatively brief when one airplane climbs or descends through another’s flight

level – and thus the exposure to risk is also relatively brief.  The sequence of events by which such

a climb or descent would be accomplished is typically known as an “in-trail procedure”, or ITP.  This

report derives a formula for estimating the probability that a collision occurs when an ITP is

executed.

1.3 Suppose that airplanes  a1  and a2  are traveling in the same direction, on different

flight levels of the same route; and suppose that a2  requests a climb or descent through the flight

level of a1, which is not expected to change its altitude.  We model the airplanes as rectangular solids

of length l, width w, and height h.  Let m denote the minimum allowable longitudinal separation

between airplanes assigned to the same route and flight level.  Let k  be a number strictly between

0 and 1; and assume that an ITP may be authorized as long as the longitudinal distance between the

airplanes, when a2 begins its climb or descent, is expected to exceed  km. (Some proposals have

suggested using  k  =  ½ .  Values of  k  close to 1 yield conservative procedures; those close to 0

involve greater risk of collision.)  Also assume that the responsible controller – using whatever

manual or automated tools may be available to him – estimates that the longitudinal separation

between a1 and a2 will be between  km and m at the moment when a2 begins its (requested) climb or

descent.  Finally, assume that the controller takes advantage of a rule that allows an altitude change

when the longitudinal separation exceeds km, and authorizes the requested change. 

1.4 In estimating the probability that a1 and a2 collide, we follow an approach used in the

well-known Reich collision risk models, and assume that airplanes can collide in only one of three

possible ways:  nose-to-tail, top-to-bottom, or side-to-side.  A nose-to-tail collision occurs if and

only if the airplanes enter into longitudinal overlap during a period in which they are simultaneously

in lateral and vertical overlap.  A top-to-bottom collision occurs if and only if the airplanes enter into

vertical overlap during a period in which they are simultaneously in lateral and longitudinal overlap.

A side-to-side collision occurs if and only if the airplanes enter into lateral overlap during a period

in which they are simultaneously in longitudinal and vertical overlap.
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1.5 We generally denote constants by lower-case letters, and random variables by upper-

case letters.  n denotes the standard normal density function,  n(x) = .  Φ denotes the
1

2π
e
&

x 2

2

standard normal distribution function, Φ(x) = .  We let  denote them
x

&4
φ(u)du Ψ(x) ' m

x

&4
Φ(u)du

integral of the standard normal distribution function.

  

2 Conditions for simultaneous longitudinal and vertical overlap

2.1 Since a1 and a2 are initially assigned to different flight levels, there is no reason to

expect their speeds to be dependent.  We assume their speeds, V1 and V2  respectively, to be

independent random variables having the same normal (Gaussian) distribution.  (Though  speed

varies from one airplane to another, each airplane’s speed is assumed to be constant during the time

period in which a2 is changing its altitude.)  We let V  =  V2 ! V1 denote the signed difference

between the speeds.  V is positive when a2 is faster than a1, and negative when a2 is slower than a1.

Since V1 and V2 have the same normal distribution, their difference,  V, is also normally distributed,

and has mean 0.  Let σ2 denote the variance of  V.

2.2 We set the origin of a time axis at the moment when  a2  begins its climb or descent,

and let U denote the signed initial distance by which (the center of)  a2  is ahead of (the center of) a1.

Thus U  is positive if a2  is ahead of  a1 at  t  =  0, and negative if a2  is behind a1 at that time.  At any

particular time t after the beginning of the climb or descent, the signed distance by which a2  is ahead

of  a1 is  U + Vt.  Lacking any reason to think otherwise, we assume that U and V are independent.

2.3 If the route system always operated perfectly, we would expect U  to be uniformly

distributed on (!m, !km] c [km, m).  Recognizing that equipment occasionally fails and people

sometimes make mistakes, we more realistically assume that there is a small probability b > 0 that

the value of U  falls in the interval (!km, km). Since such events typically result from blunders, we

conservatively assume that when U  falls in the interval (!km, km) it is uniformly distributed on that

interval.  Thus  fU , the probability density function of U, is given by

fU (u) =  (1)

0 if u # &m

1& b

2m(1&k)
if &m < u # &km

b

2km
if &km < u < km

1& b

2m(1&k)
if km # u < m

0 if m # u.
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2.4 We define six events by which we describe the values assumed by the pair of random

variables U and V :

E1:  !m  <  U  < !l  and  V  <  0; E2: !m  <  U  < !l  and  V  >  0;

E3:  !l # U # l and  V  <  0; E4:  !l # U # l  and  V  >  0;

E5:  l  <  U  <  m  and  V  <  0;  and E6:  l  <  U  <  m  and  V  >  0.

The union of these six events is the set of all possible values of the ordered pair (U, V ), except those

whose second coordinate is 0, i.e., except those points that lie on the horizontal axis of a cartesian

plane.  Since – as a subset of the plane – the axis has measure 0, there is no risk of omitting events

of positive probability by omitting consideration of those values of (U, V) for which V = 0.

2.5 We let Tb and Te respectively denote the beginning and ending times of the interval

in which the airplanes are in a state of longitudinal overlap.  That is, Tb  is the earliest time t for

which U + Vt is in the interval [!l, l ], and Te is the latest such time.

2.6 If the airplanes are in longitudinal overlap when a2 begins its altitude change, i.e., if

!l # U # l , then Tb = 0.  If  V < 0, so that  E3 occurs, then the overlap period ends when U + V Te

=  !l ; and thus Te  =   .  If  V > 0, so that E4 occurs, then the overlap period ends when
&l&U

V

U + V Te  =  l ; and thus  Te  =  .
l&U

V

2.7 E2 occurs if and only if  !m  <  U  < !l  and V  >  0, i.e., if and only if  a2  is initially

behind a1 , but flying faster than a1.  Then  U + V Tb  =  !l,  so that Tb  = ; and U + V Te = l,
&l&U

V

so that  Te  =  .
l&U

V

2.8 E5 occurs if and only if  l  <  U  <  m  and V  <  0, i.e., if and only if a2  is initially

ahead of a1 , but flying slower than a1.  Then U + V Tb = l, so that  Tb = ; and  U + V Te = !l,
l&U

V

so that  Te  = .
&l&U

V

2.9 If  !m < U < !l  and V < 0, i.e., if E1 occurs, then a2 is initially behind a1 , and

continues to fall farther behind.  If  l  < U  < m  and  V  >  0, i.e., if E6 occurs, then a2 is initially

ahead of a1 , and continues to move farther ahead.  In both of these cases the airplanes fail to

experience a longitudinal overlap.

2.10 Let a denote the absolute value of the initial altitude difference between a1 and a2 ;

and let c denote the absolute value of a2 ’s speed of climb or descent.  Ideally we would like to treat
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a  and  c as random variables; but since there are only a few values that need to be considered, we

take the easier approach of treating them as constants, and redoing the computations for relevant

values.  If a2 is climbing, then at any particular time t during the climb, the signed distance by which

a1 is above a2 is a !ct ; and if a2 is descending, then at any particular time t during the descent, the

signed distance by which a2  is above a1 is also  a !ct .  In either case the airplanes enter into vertical

overlap at the time tb for which  a !ctb  =  h , so that  tb = (a !h)'c ; and since the overlap lasts 2h'c,

it ends at time te =  tb + 2h'c.  That is, the interval of vertical overlap, [tb , te], is .
a&h

c
,

a%h

c

2.11 In order to avoid unnecessary mathematical complications we explicitly assume a

relationship that is virtually certain to be satisfied in practice if ITPs are ever authorized.  The initial

vertical separation a, between a1 and a2, is likely to be 2,000 ft or 3,000 ft – surely no more 6,000 ft

– which is almost 1 nmi.  The ratio l'h, i.e., the ratio of an airplane’s length to its height, is

approximately 3.  Therefore, the maximum value of al'h is no greater than 3 nmi.  In discussions

of the possible values of the minimum initial longitudinal separation needed to conduct an ITP, i.e.,

in discussions of the possible values for km, the most frequently suggested value of  m is 30 nmi (the

smallest longitudinal separation applicable in oceanic airspace), and the most frequently suggested

value of km is 15 nmi.  While it is, of course, conceivable that a somewhat smaller value of  km

could be adopted, it is not realistic to imagine that it would be very much smaller.  We can – and

do – safely assume that km > al'h.

3 The probability of simultaneous longitudinal and vertical overlap

3.1 Let  fU,V  denote the joint density function of  U and V.  Since these two random

variables are independent, their joint density function must be the product of their individual density

functions.  Since U  has the density given by equation (1), and  V  has the normal distribution with

mean 0 and variance σ2, it immediately follows that

fU,V (u,v)  = (2)

0 if u # &m

1& b

2m(1&k)
@ n(v ; 0, σ2) if &m < u # &km

b

2km
@ n(v ; 0, σ2) if &km < u < km

1& b

2m(1&k)
@ n(v ; 0, σ2) if km # u < m

0 if m # u.

3.2 Recall that if  E1 or E6 occurs,  a1 and a2 cannot experience a simultaneous

longitudinal and vertical overlap.  A simultaneous overlap can occur only when  E2,  E3,  E4  or  E5

occurs; and in those cases it begins at max(Tb , tb), and ends at min(Te , te ).  We consider three ranges
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of possible values for the random variables Tb and Te :  [0, tb ), [tb , te ], and (te , 4).  Since Tb < Te ,

there are six possible combinations of those ranges into which the random variables Tb and Te can

fall.  For convenience in writing, we name the event that represents each combination:

C1 = {0 # Tb < Te < tb}; C2 = {0 # Tb < tb # Te # te }; C3 = {0 # Tb < tb < te < Te};

C4 = {tb # Tb < Te # te}; C5 = {tb # Tb # te  < Te}; C6 = {te < Tb < Te}.

The following table summarizes these six events and the corresponding intervals of simultaneous

overlap.

event [0, tb) [tb , te ] (te , 4)

interval of simultaneous overlap 

= [max(Tb , tb),  min(Te , te )]

C1 Tb , Te none

C2 Tb Te [tb , Te]

C3 Tb Te [tb , te]

C4 Tb , Te [Tb , Te]

C5 Tb Te [Tb , te]

C6 Tb , Te none

We can now proceed to the task of computing the probabilities P(Ei 1 Cj ), for  i, j  =  2, ..., 5, i.e.,

for all pairs (i, j) for which simultaneous longitudinal and vertical overlap may occur.  However, we

immediately note that since Tb = 0 whenever E3 or E4 occurs, and tb > 0, the events  E3 1 C4 , E3 1 C5 ,

E4 1 C4 and E4 1 C5 are all impossible, and have probability 0.

3.3 If  E2 occurs, then (by the definition in paragraph 2.4)  !m < U < !l  and V  >  0; and,

as was shown in paragraph 2.7,  Tb = , and  Te = .
&l&U

V

l&U

V

3.3.1 When  E2 1 C2 occurs,  0 < Tb =  < tb # Te =  # te .  Since V, tb and te are
&l&U

V

l&U

V

all positive, it follows that  < V #  and  # V.  Figure 1  – which is not drawn to
&l&U

t
b

l&U

t
b

l&U

t
e

scale (since, in practice,  m  is approximately a thousand times greater than  l ) – shows that the

random vector (U, V) satisfies these inequalities, and also satisfies the inequality !m < U < !l  (of

event  E2)  if and only if (U, V) takes a value in the point set A2,2 = {(u, v): !m < u < !l  and

max[(!l!u)'tb ,  (l!u)'te]  <  v  <  (l!u)'tb}.  The lower boundary of A2,2 is {(u, v): !m < u < !l  and

v = max[(!l!u)'tb , (l!u)'te]}. The intersection of the lines v = (!l!u)'tb  and  v = (l!u)'te  is the

point at which  (!l!u)te  =  (l!u)tb , i.e., where  u  =  !l (tb + te)'(te ! tb).  Using the definitions of tb
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and te in paragraph 2.10, we note that  tb + te  =    =   and  te !tb  =  
a&h

c
%

a%h

c

2a

c

a%h

c
&

a&h

c

= , so that the intersection occurs where  u  =  !al'h, as shown in figure 1.  The probability of
2h

c

the event E2 1 C2 is the probability that the random vector (U, V) takes a value in A2,2 . That is,

P(E2 1 C2)  =    =  mmA2,2

f
U,V

(u,v)dvdu m
&km

&m m
(l&u)'tb

(&l&u)'tb

1&b

2m(1&k)
n(v ;0,σ2)dvdu

+  m
&al'h

&km m
(l&u)'tb

(&l&u)'tb

b

2km
n(v ;0,σ2)dvdu

+  .m
&l

&al'hm
(l&u)'tb

(l&u)'te

b

2km
n(v ;0,σ2)dvdu

3.3.2 When  E2 1 C3 occurs,  0 < Tb =  < tb  and  te  < Te = .  Since V, tb and te

&l&U

V

l&U

V

are all positive, it follows that  <  V  <  .  Figure 1 shows that the random vector (U, V)
&l&U

t
b

l&U

t
e

satisfies these inequalities, and also satisfies the inequality !m < U < !l  (of event  E2) if and only

if (U, V) takes a value in the point set  A2,3  =  {(u, v): !m < u < !l  and  (!l!u)'tb  < v < (l!u)'te}.

P(E2 1 C3) =  =  .mmA2,3

f
U,V

(u,v)dvdu m
&l

&al'hm
(l&u)'te

(&l&u)'tb

b

2km
n(v ;0,σ2)dvdu

3.3.3 When  E2 1 C4 occurs,  tb #  <  # te .  Since V, tb and te are all positive,
&l&U

V

l&U

V

it follows that  # V  # .  In figure 1, the set of points A2,4 = {(u, v): !m < u < !l  and
l&U

t
e

&l&U

t
b

(l!u)'te  # v # (!l!u)'tb} is the set of possible values of (U, V) corresponding to the event E2 1 C4.

Therefore, P(E2 1 C4)  = mmA2,4

f
U,V

(u,v)dvdu

=    +  .m
&km

&m m
(&l&u)'tb

(l&u)'te

1&b

2m (1&k)
n(v ;0,σ2)dvdu m

&al'h

&km m
(&l&u)'tb

(l&u)'te

b

2km
n(v ;0,σ2)dvdu

3.3.4 When  E2 1 C5 occurs,  tb # Tb =  # te < Te =  .  Since V, tb and te are all
&l&U

V

l&U

V

positive, it follows that  #  V  <   and  V # .  Thus, as shown in figure 1, the
&l&U

t
e

l&U

t
e

&l&U

t
b

event E2 1 C5 occurs if and only if (U, V) takes a value in the point set A2,5 = {(u, v): !m < u < !l  and
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 (!l!u)'te # v < min[(l!u)'te , (!l!u)'tb]}.   Therefore, P(E2 1 C5)  =    =  mmA2,5

f
U,V

(u,v)dvdu

m
&km

&m m
(l&u)'te

(&l&u)'te

1&b

2m(1&k)
n(v ;0,σ2)dvdu

+  m
&al'h

&km m
(l&u)'te

(&l&u)'te

b

2km
n(v ;0,σ2)dvdu

+  .m
&l

&al'hm
(&l&u)'tb

(&l&u)'te

b

2km
n(v ;0,σ2)dvdu

3.4 If  E3 occurs, then (by the definition in paragraph 2.4)  !l # U # l  and V <  0; and,

as was shown in paragraph 2.6,  Tb = 0 and  Te = .
&l&U

V

3.4.1 The event  E3 1C2 occurs if and only if !l # U # l, Tb = 0, and  tb # Te =  # te .
&l&U

V

Since V < 0, while both  tb and te are positive, this last pair of inequalities is seen to be equivalent to

 #  V  # .  The set A3,2 = {(u, v): !l # u # l  and  (!l!u)'tb # v # (!l!u)'te}, shown
&l&U

t
b

&l&U

t
e

in figure 2, is the set of all possible values of (U, V) for which E3 1 C2 occurs.  Therefore, P( E3 1 C2)

=  = .mmA3,2

f
U,V

(u,v)dvdu m
l

&l m
(&l&u)'te

(&l&u)'tb

b

2km
n(v ;0,σ2)dvdu

3.4.2 The event  E3 1 C3 occurs if and only if  !l # U # l,  Tb = 0, and  te < Te = .
&l&U

V

Since  V <  0 and  te > 0, this last inequality is equivalent to  < V.  Figure 2 shows point set
&l&U

t
e

A3,3 = {(u, v): !l # u # l  and  (!l!u)'te < v < 0}, i.e., the set of possible values of (U,V)  for which

E3 1C3 occurs. Thus P(E3 1 C3) =  = .mmA3,3

f
U,V

(u,v)dvdu m
l

&l m
0

(&l&u)'te

b

2km
n(v ;0,σ2)dvdu

3.5 If  E4 occurs, then (by the definition in paragraph 2.4)  !l # U # l  and V >  0; and,

as was shown in paragraph 2.6,  Tb = 0 and  Te = .
l&U

V

3.5.1 The event  E4 1 C2 occurs if and only if !l # U # l,  Tb = 0, and tb  # Te =  # te .
l&U

V

Since V, tb and te are all positive, this last pair of inequalities is equivalent to   #  V  # .
l&U

t
e

l&U

t
b

 The set A4,2 = {(u, v): !l # u # l  and  (l!u)'te # v # (l!u)'tb}, shown in figure 2, is the set of all
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possible values of (U, V) for which E4 1 C2 occurs.  Therefore, P( E4 1 C2) =  =mmA4,2

f
U,V

(u,v)dvdu

.m
l

&l m
(l&u)'tb

(l&u)'te

b

2km
n(v ;0,σ2)dvdu

3.5.2 The event  E4 1 C3 occurs if and only if  !l # U # l,  Tb = 0, and  te < Te = .
l&U

V

Since  V >  0 and  te > 0, this last inequality is equivalent to V  < .  Figure 2 shows the point
l&U

t
e

set  A4,3 = {(u, v): !l # u # l  and 0 < v < (l!u)'te}, which is the set of values that may be assumed

by the random vector (U,V) in order for E4 1 C3 to occur.  Therefore, P(E4 1 C3) =

  =  .mmA4,3

f
U,V

(u,v)dvdu m
l

&l m
(l&u)'te

0

b

2km
n(v ;0,σ2)dvdu

3.6 If  E5 occurs, then (by the definition in paragraph 2.4)  l < U < m  and V <  0; and, as

was shown in paragraph 2.8,  Tb =  and  Te = .
l&U

V

&l&U

V

3.6.1 When  E5 1 C2 occurs,  0 < Tb =  < tb # Te =  # te .  Since V < 0, but both
l&U

V

&l&U

V

tb and te are positive, it follows that  # V <  and V # .  Figure 3 shows that (U, V)
&l&U

t
b

l&U

t
b

&l&U

t
e

satisfies these inequalities, and also satisfies the inequality l < U < m  (of event  E5) if and only if it

takes a value in point set A5,2 = {(u, v): l < u < m  and (!l!u)'tb # v < min[(l!u)'tb , (!l!u)'te ]}.

The upper boundary of A5,2 is {(u, v): l < u < m  and v = min[(l!u)'tb , (!l!u)'te]}.  The intersection

of the lines v = (l!u)'tb  and  v = (!l!u)'te  is at the point  where  (!l!u)tb  =  (l!u)te , i.e., where

u  =  l (tb + te)'(te ! tb).  As was shown in paragraph 3.3.1,  (tb + te)'(te ! tb)  =  a'h, so that the

intersection occurs where  u  =  al'h, as shown in figure 3.  The probability of the event E5 1 C2 is

the probability that the random vector (U, V) takes a value in A5,2 . That is, P(E5 1 C2) =

  =  mmA5,2

f
U,V

(u,v)dvdu m
al'h

l m
(&l&u)'te

(&l&u)'tb

b

2km
n(v ;0,σ2)dvdu

+  m
km

al'h m
(l&u)'tb

(&l&u)'tb

b

2km
n(v ;0,σ2)dvdu

+  .m
m

km m
(l&u)'tb

(&l&u)'tb

1&b

2m (1&k)
n(v ;0,σ2)dvdu

3.6.2 When  E5 1 C3 occurs,  0 < Tb =  < tb  and  te  < Te = .  Since V < 0, but
l&U

V

&l&U

V

both tb and te are positive, it follows that  <  V  <  .  Figure 3 shows that the random
&l&U

t
e

l&U

t
b



11

-3.8 

-2.8 

-1.8 

-0.8 

0.2 

1.2 

-4 -2 0 2 4 6 8 10 12 14 

  Figure 3: point sets A5,2 , A5,3 , A5,4 and A5,5

v

u-l l m

l/tb

l/te

-l/tb

-l/te

v = (l-u)/tb

v = (-l-u)/tb

v = (-l-u)/te

v = (l-u)/te

al/h

A5,2

A5,3

A5,4

A5,5

km



12

vector (U, V) satisfies these inequalities, and also satisfies the inequality l < U < m (of event E5) if

and only if (U, V) takes a value in point set A5,3 ={(u, v): l < u < m  and  (!l!u)'te  < v < (l!u)'tb}.

Therefore, P(E5 1 C3)  =    =  .mmA5,3

f
U,V

(u,v)dvdu m
al'h

l m
(l&u)'tb

(&l&u)'te

b

2km
n(v ;0,σ2)dvdu

 3.6.3 When  E5 1 C4 occurs,  tb # Tb =  < Te =  # te .  Since V < 0, but both tb

l&U

V

&l&U

V

and te are positive, it follows that  # V  # .  In figure 3, the set of points A5,4 = {(u, v):
l&U

t
b

&l&U

t
e

l < u < m  and  (l!u)'tb  # v # (!l!u)'te} is the set of possible values of (U, V) corresponding to the

event E5 1 C4.  Therefore, P(E5 1 C4)  =    =mmA5,4

f
U,V

(u,v)dvdu

  +  .m
km

al'h m
(&l&u)'te

(l&u)'tb

b

2km
n(v ;0,σ2)dvdu m

m

km m
(&l&u)'te

(l&u)'tb

1&b

2m (1&k)
n(v ;0,σ2)dvdu

3.6.4 When  E5 1C5 occurs,  tb # Tb =  # te < Te =  .    Since V < 0, but both tb

l&U

V

&l&U

V

and te are positive, it follows that  < V #  and   # V.  Thus, as shown in figure 3,
&l&U

t
e

l&U

t
e

l&U

t
b

the event E5 1C5 occurs if and only if (U, V) takes a value in the set A5,5 = {(u, v): l < u < m  and

max[(!l!u)'te , (l!u)'tb] < v # (l!u)'te}.  Therefore, P(E5 1 C5)  =    =mmA5,5

f
U,V

(u,v)dvdu

m
al'h

l m
(l&u)'te

(l&u)'tb

b

2km
n(v ;0,σ2)dvdu

+  m
km

al'hm
(l&u)'te

(&l&u)'te

b

2km
n(v ;0,σ2)dvdu

+  .m
m

km m
(l&u)'te

(&l&u)'te

1&b

2m (1&k)
n(v ;0,σ2)dvdu

3.7 Let O denote the event that a1 and a2 experience a simultaneous longitudinal and

vertical overlap.  O  is the union of the twelve events Ei 1 Cj  for which  i = 2 or 5 and  j = 2, 3, 4 or

5, or for which  i = 3 or 4 and  j = 2 or 3.  From their definitions (in paragraphs 2.4 and 3.2) we see

that the Ei are mutually disjoint, and the Cj are also mutually disjoint.  Therefore, all of the events

Ei 1 Cj are mutually disjoint.  Figures 1, 2, and 3 illustrate this property, showing that the sets Ai, j are

also mutually disjoint.  Thus, we can find P(O), the probability of simultaneous overlap, simply by

adding the twelve probabilities P(Ei 1Cj).  In integrating the function  n(v; 0, σ 2 ), we  recall that if

p and q are any two real numbers, then – by letting x = v'σ, so that dv = σ dx – we have

 =  =  =  = m
q

p

n(v ;0,σ2)dv m
q

p

1

σ 2π
e
&

v 2

2σ2

dv m
q'σ

p'σ

1

σ 2π
e
&

x 2

2 σdx m
q'σ

p'σ

1

2π
e
&

x 2

2 dx m
q'σ

p'σ
φ(x)dx

= Φ(q'σ) ! Φ(p'σ).
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3.7.1 We first add the probabilities that (U, V) takes a value in one of the sets A2,  j , which

are  illustrated in figure 1. Since those sets are disjoint,   =  j
5

j ' 2

Ρ(E
2
1 C

j
) j

5

j ' 2 mmA2, j

f
U,V

(u,v)dvdu

=  mmA2,2cA2, 3cA2,4cA2, 5

f
U,V

(u,v)dvdu

=  m
&km

&m m
(l&u)'tb

(&l&u)'te

f
U,V

(u,v)dvdu % m
&l

&km m
(l&u)'tb

(&l&u)'te

f
U,V

(u,v)dvdu

=  m
&km

&m m
(l&u)'tb

(&l&u)'te

1&b

2m(1&k)
n(v;0,σ2)dvdu % m

&l

&km m
(l&u)'tb

(&l&u)'te

b

2mk
n(v;0,σ2)dvdu

=  
1&b

2m(1&k) m
&km

&m

Φ
l&u

σ t
b

& Φ
&l&u

σ t
e

du %
b

2km m
&l

&km

Φ
l&u

σ t
b

& Φ
&l&u

σ t
e

du

=  
1&b

2m(1&k) m
&km

&m

Φ
l&u

σ t
b

du & m
&km

&m

Φ
&l&u

σ t
e

du

+   .
b

2km m
&l

&km

Φ
l&u

σ t
b

du& m
&l

&km

Φ
&l&u

σ t
e

du

3.7.2 We next add the probabilities that (U, V) takes a value in one of the sets A3,  j or A4,  j ,

illustrated in figure 2. Since those sets are also disjoint,   =  j
i' 3, 4
j' 2, 3

Ρ(E
i
1 C

j
) j

i' 3, 4
j' 2, 3

mmAi, j

f
U,V

(u,v)dvdu

=    =  mmA3,2cA3, 3cA4,2cA4, 3

f
U,V

(u,v)dvdu m
l

&l m
(l&u)'tb

(&l&u)'tb

b

2km
n(v ;0,σ2)dvdu

=  
b

2km m
l

&l

Φ
l&u

σ t
b

&Φ
&l&u

σ t
b

du

=   .
b

2km m
l

&l

Φ
l&u

σ t
b

du & m
l

&l

Φ
&l&u

σ t
b

du

3.7.3 Finally we add the probabilities that (U, V) takes a value in one of the sets A5, j , which

are illustrated in figure 3. Again the sets are disjoint; so   =  j
5

j ' 2

Ρ(E
5
1 C

j
) j

5

j ' 2 mmA5, j

f
U,V

(u,v)dvdu

=  mmA5,2cA5, 3cA5,4cA5, 5

f
U,V

(u,v)dvdu
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=  m
km

l m
(l&u)'te

(&l&u)'tb

f
U,V

(u,v)dvdu % m
m

km m
(l&u)'te

(&l&u)'tb

f
U,V

(u,v)dvdu

=  m
km

l m
(l&u)'te

(&l&u)'tb

b

2km
n(v;0,σ2)dvdu % m

m

km m
(l&u)'te

(&l&u)'tb

1&b

2m(1&k)
n(v;0,σ2)dvdu

=  
b

2km m
km

l

Φ
l&u

σ t
e

& Φ
&l&u

σ t
b

du %
1&b

2m(1&k) m
m

km

Φ
l&u

σ t
e

& Φ
&l&u

σ t
b

du

=  
b

2km m
km

l

Φ
l&u

σ t
e

du& m
km

l

Φ
&l&u

σ t
b

du

+   .
1&b

2m(1&k) m
m

km

Φ
l&u

σ t
e

du& m
m

km

Φ
&l&u

σ t
b

du

3.7.4 Combining results from the last three paragraphs gives us P(O) =

   +  
1&b

2m(1&k) m
&km

&m

Φ
l&u

σ t
b

du & m
&km

&m

Φ
&l&u

σ t
e

du
b

2km m
&l

&km

Φ
l&u

σ t
b

du& m
&l

&km

Φ
&l&u

σ t
e

du

+  
b

2km m
l

&l

Φ
l&u

σ t
b

du & m
l

&l

Φ
&l&u

σ t
b

du

  +    +  
b

2km m
km

l

Φ
l&u

σ t
e

du& m
km

l

Φ
&l&u

σ t
b

du
1&b

2m(1&k) m
m

km

Φ
l&u

σ t
e

du& m
m

km

Φ
&l&u

σ t
b

du

=  
1&b

2m(1&k) m
&km

&m

Φ
l&u

σ t
b

du & m
&km

&m

Φ
&l&u

σ t
e

du % m
m

km

Φ
l&u

σ t
e

du& m
m

km

Φ
&l&u

σ t
b

du

+  
b

2km m
&l

&km

Φ
l&u

σ t
b

du& m
&l

&km

Φ
&l&u

σ t
e

du % m
l

&l

Φ
l&u

σ t
b

du

 .& m
l

&l

Φ
&l&u

σ t
b

du% m
km

l

Φ
l&u

σ t
e

du& m
km

l

Φ
&l&u

σ t
b

du
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=  
1&b

2m(1&k) m
&km

&m

Φ
l&u

σ t
b

du & m
&km

&m

Φ
&l&u

σ t
e

du % m
m

km

Φ
l&u

σ t
e

du& m
m

km

Φ
&l&u

σ t
b

du

      +   .
b

2km m
l

&km

Φ
l&u

σ t
b

du& m
&l

&km

Φ
&l&u

σ t
e

du % m
km

l

Φ
l&u

σ t
e

du & m
km

&l

Φ
&l&u

σ t
b

du

In order to simplify this last expression we make appropriate substitutions for the arguments of the

standard normal distribution function Φ.  In the two integrals for which  is the argument of Φ,
l&u

σ t
b

we let  w = .  Then  du  =  !σ tb dw ; when  u  =  !m,  w  =  ; when  u  =  !km,  w  =  ;
l&u

σ t
b

m%l

σ t
b

km%l

σ t
b

and when u  =  l,  w  = 0.  In the two integrals for which  is the argument of Φ, we let x =
&l&u

σ t
e

 .  Then  du  =  !σ te dx ; when  u  =  !m,  x  =  ; when  u  =  !km,  x  =  ; and when
&l&u

σ t
e

m&l

σ t
e

km&l

σ t
e

u  =  !l,  x  = 0.  In the two integrals for which  is the argument of Φ, we let y  =   = .
l&u

σ t
e

l&u

σ t
e

&
u&l

σ t
e

Then  du  =  !σ te dy ; when  u  =  l,  y  = 0; when  u  =  km,  y  =  ; and when  u  =  m,&
km&l

σ t
e

y = .  In the two integrals for which  is the argument of Φ, we let  z =   =  .&
m&l

σ t
e

&l&u

σ t
b

&l&u

σ t
b

&
u% l

σ t
b

Then  du  =  !σ tb dz; when  u  =  !l,  z  = 0; when  u  =  km,  z  =  ; and when  u  =  m,&
km%l

σ t
b

z = .  Applying these substitutions we find that P(O) =&
m%l

σ t
b

  
1&b

2m(1&k) m

km%l

σ tb

m%l

σ tb

Φ(w)(&σ t
b
dw)& m

km&l

σ te

m&l

σ te

Φ(x)(&σ t
e
dx)% m

&
m&l

σ te

&
km&l

σ te

Φ(y)(&σ t
e
dy)& m

&
m%l

σ tb

&
km%l

σ tb

Φ(z)(&σ t
b
dz)

   +  
b

2km m
0

km%l

σ tb

Φ(w)(&σ t
b
dw)& m

0

km&l

σ te

Φ(x)(&σ t
e
dx)% m

&
km&l

σ te

0

Φ(y)(&σ t
e
dy)& m

&
km%l

σ tb

0

Φ(z)(&σ t
b
dz)
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=  
1&b

2m(1&k)
σ t

bm

m%l

σ tb

km%l

σ tb

Φ(w)dw& σ t
bm

&
km% l

σ tb

&
m% l

σ tb

Φ(z)dz% σ t
em

&
km& l

σ te

&
m& l

σ te

Φ(y)dy& σ t
em

m& l

σ te

km& l

σ te

Φ(x)dx

        +  
b

2km
σ t

bm

km% l

σ tb

0

Φ(w)dw& σ t
bm

0

&
km% l

σ tb

Φ(z)dz% σ t
em

0

&
km& l

σ te

Φ(y)dy& σ t
em

km& l

σ te

0

Φ(x)dx

=  
1&b

2m(1&k)
σ t

b
Ψ

m%l

σ t
b

&Ψ
km%l

σ t
b

& σ t
b
Ψ &

km% l

σ t
b

&Ψ &
m% l

σ t
b

+  σ t
e
Ψ &

km& l

σ t
e

&Ψ &
m& l

σ t
e

& σ t
e
Ψ

m& l

σ t
e

&Ψ
km& l

σ t
e

+  
b

2km
σ t

b
Ψ

km% l

σ t
b

&Ψ(0) & σ t
b
Ψ(0)&Ψ &

km% l

σ t
b

+  σ t
e
Ψ(0)&Ψ &

km& l

σ t
e

& σ t
e
Ψ

km& l

σ t
e

&Ψ(0)

=  
1&b

2m(1&k)
σ t

b
Ψ

m%l

σ t
b

%Ψ &
m% l

σ t
b

& Ψ
km% l

σ t
b

%Ψ &
km%l

σ t
b

+  σ t
e
Ψ

km& l

σ t
e

%Ψ &
km& l

σ t
e

& Ψ
m& l

σ t
e

%Ψ &
m& l

σ t
e

+  
b

2km
σ t

b
Ψ

km% l

σ t
b

&Ψ(0) % Ψ &
km% l

σ t
b

&Ψ(0)

!  (3a)σ t
e
Ψ

km& l

σ t
e

&Ψ(0) % Ψ &
km& l

σ t
e

&Ψ(0)
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3.7.5 Taking advantage of the symmetry of the normal density function, we note that for

any real x, Ψ(0) ! Ψ(!x) =  =  = (for s = !t )  =m
0

&x

Φ(t)dt m
0

&x

[1&Φ(&t)]dt m
0

x

[1&Φ(s)] (&ds)

 =   =  x ! [Ψ(x) ! Ψ(0)].  From this result we draw three conclusions:m
x

0

[1&Φ(s)]ds [s]
x

0& [Ψ(s)]
x

0

[Ψ(x) !Ψ(0)] + [Ψ(!x) ! Ψ(0)]  =  [Ψ(x) ! Ψ(0)] ! [Ψ(0) ! Ψ(!x)]

=  [Ψ(x) ! Ψ(0)] ! {x ! [Ψ(x) ! Ψ(0)]}  =  2 @ [Ψ(x) ! Ψ(0)]  ! x ; (4a)

Ψ(0) !Ψ(!x)  =    x ! Ψ(x) + Ψ(0), from which Ψ(x) !Ψ(!x)  =  x ; and (4b)

(since equation (4b) tells us that Ψ(!x)  =  Ψ(x) !x  )

Ψ(x) + Ψ(!x) =  2Ψ(x) !x. (4c)

3.7.6 Applying formula (4c) to the first two lines of the right side of equation (3a), and

applying formula (4a) to its last two lines, we rewrite that equation as P(O) = 

1&b

2m(1&k)
σ t

b
2Ψ

m%l

σ t
b

&
m% l

σ t
b

& 2Ψ
km% l

σ t
b

&
km%l

σ t
b

+  σ t
e

2Ψ
km& l

σ t
e

&
km& l

σ t
e

& 2Ψ
m& l

σ t
e

&
m& l

σ t
e

  +  
b

2km
σ t

b
2@ Ψ

km% l

σ t
b

&Ψ(0) &
km% l

σ t
b

& σ t
e

2@ Ψ
km& l

σ t
e

&Ψ(0) &
km& l

σ t
e

=  
1&b

2m(1&k)
2σ t

b
Ψ

m%l

σ t
b

&m& l& 2σ t
b
Ψ

km% l

σ t
b

% km% l

% 2σ t
e
Ψ

km& l

σ t
e

& km% l& 2σ t
e
Ψ

m& l

σ t
e

% m& l

    +  
b

2km
2σ t

b
Ψ

km% l

σ t
b

& 2σ t
b
Ψ(0)& km& l& 2σ t

e
Ψ

km& l

σ t
e

% 2σ t
e
Ψ(0)% km& l

=  
1&b

2m(1&k)
2σ t

b
Ψ

m%l

σ t
b

& 2σ t
b
Ψ

km% l

σ t
b

% 2σ t
e
Ψ

km& l

σ t
e

& 2σ t
e
Ψ

m& l

σ t
e

+  
b

2km
2σ t

b
Ψ

km% l

σ t
b

& 2σ t
e
Ψ

km& l

σ t
e

% 2σ (t
e
& t

b
)Ψ(0)&2 l
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=  σ t
b
Ψ

km% l

σ t
b

@
b

km
&

1&b

m(1&k)
& σ t

e
Ψ

km& l

σ t
e

@
b

km
&

1&b

m(1&k)

         %
1&b

m(1&k)
σ t

b
Ψ

m% l

σ t
b

& σ t
e
Ψ

m& l

σ t
e

%
b

mk
σ (t

e
& t

b
)Ψ(0)& l

=  σ t
b
Ψ

km% l

σ t
b

& σ t
e
Ψ

km& l

σ t
e

@
b(1&k)& (1&b)k

mk (1&k)

%
1&b

m(1&k)
σ t

b
Ψ

m% l

σ t
b

& σ t
e
Ψ

m& l

σ t
e

%
b

mk
σ (t

e
& t

b
)Ψ(0)& l

=  
b&k

mk (1&k)
σ t

b
Ψ

km% l

σ t
b

& σ t
e
Ψ

km& l

σ t
e

 . (3b)%
1&b

m(1&k)
σ t

b
Ψ

m% l

σ t
b

& σ t
e
Ψ

m& l

σ t
e

%
b

mk
σ (t

e
& t

b
)Ψ(0)& l

3.8 Since we can’t write Φ(t) in closed form, we also can’t obtain a closed-form

expression for Ψ(x) = .  However, we can  obtain values of  Ψ(x) by using the Taylor seriesm
x

&4
Φ(t)dt

expansion Ψ(x) = .  In particular, this
1

2π
%

x

2
%

1

2π

x 2

2
%j

4
k'1 (&1)k x 2k%2

(2k%1)(2k%2)Π
k

j'1 (2j)

formula shows that Ψ(0) = .  Thus we can simplify equation (3b) to obtain P(O) =1' 2π

=  
b&k

mk (1&k)
σ t

b
Ψ

km% l

σ t
b

& σ t
e
Ψ

km& l

σ t
e

 . (3c)%
1&b

m(1&k)
σ t

b
Ψ

m% l

σ t
b

& σ t
e
Ψ

m& l

σ t
e

%
b

mk

σ (t
e
& t

b
)

2π
& l

3.9 The Taylor series expansion for Ψ(x) consists largely of a sum of alternating positive

and negative terms; and when |x| > 6, the absolute values of some terms become large enough for a

spreadsheet implementation to lose precision.  Fortunately, we can apply two simple approximations.

The following table gives values of  Ψ(x) for integer values of x ranging from !6 to 6:
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x   Ψ(x) x   Ψ(x)
-6 1.466569088393E-10 1 1.083315470588E+00 

-5 5.346160403263E-08 2 2.008490702617E+00 

-4 7.145258432928E-06 3 3.000382154317E+00 

-3 3.821543170477E-04 4 4.000007145258E+00 

-2 8.490702616830E-03 5 5.000000053462E+00 

-1 8.331547058769E-02 6 6.000000000147E+00 

0 3.989422804014E-01 

The table suggests that as x becomes more and more negatively large,  Ψ(x) rapidly approaches 0

(from above); and as x becomes more and more positively large,  Ψ(x) rapidly approaches x (from

above).  We intuitively expect Ψ(x) to approach 0 as x approaches !4, since Φ is a continuous

distribution function.  Figure 4 can give us an intuitive understanding of the behavior of  Ψ as x

becomes positively large.  The figure shows  Φ, the standard normal distribution function, as a blue

curve.  Ψ(x) is the area under the curve, from !4 to x.  Ψ(x) is illustrated as the sum of the areas of

regions R1 and R2.  Since 1!Φ(x) = Φ(!x) for all real  x, region  R3 looks more and more like (an

inverted copy of) region  R1 as x becomes (positively) large.  Therefore, as x becomes large, the sum

of the areas of  R1 and R2 approaches (from above) the sum of the areas of  R2 and R3 .  The sum of

the areas of  R2 and R3 is simply  =  =  = x.  Inm
x

0

Φ(t)dt% m
x

0

1&Φ(t) dt m
x

0

Φ(t)%1&Φ(t) dt m
x

0

dt

other words, Ψ(x)  approaches x (from above); and, as is shown in the table, the approach is quite

rapid.  (Assuming that Ψ(x) approaches 0 as x approaches !4, and invoking equation (4b), gives us

another way to see that  Ψ(x) approaches x as x becomes positively large.)

3.10 Figure 5 shows a spreadsheet used to compute P(O).  In this particular example

(m +l)'(σtb) and (m !l)'(σte) are far greater than 6; and so we use the approximation Ψ(x) . x in

order to compute  Ψ[(m +l)'(σtb)] and Ψ[(m !l)'(σte)].  However,  (km + l)'(σtb) and (km ! l)'(σte)

are less than 6; so we compute the values of  Ψ at those arguments by applying the Taylor series.

The numbers shown on the spreadsheet indicate that even for an argument as small as 4.82, the

approximation gives the same values of the first five decimal places, and would give the same value

if rounded to the sixth decimal place.   It is important to recognize that, while the parameter values

used in figure 5 are not unrealistic, they were simply chosen to be illustrative, and are not based on

an empirical study.  In particular, the value of  35 kts used for σ, the standard deviation of the

difference between the airplanes’ speeds, is approximately 0.06 mach at the flight levels where

modern transport airplanes typically cruise.

3.11 If all arguments of  Ψ in equation (3c) are greater than 6, we can safely write P(O) .

b&k

mk (1&k)
σ t

b
@

km% l

σ t
b

& σ t
e
@

km& l

σ t
e

%
1&b

m(1&k)
σ t

b
@

m% l

σ t
b

& σ t
e
@

m& l

σ t
e

%
b

mk

σ (t
e
& t

b
)

2π
& l
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=  
b&k

mk (1&k)
[(km% l)& (km& l)] %
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Since (as was shown in paragraph 3.3.1)  te !tb  =  2h'c,  we can rewrite approximation (3d) as

P(O)  .  ; (3e)
b

mk
l%

2σh

2π c

and since (as was shown in paragraph 3.3.1) we also have tb  + te  =  2a'c  – from which it

immediately follows that 2'c = (tb  + te )'a  – we can also rewrite the approximation as

P(O)  . . (3f) 
b

mk
l%

(t
b
% t

e
)σh

2π a

3.12 Figure 6 shows curves generated by repeated applications of a spreadsheet similar to

the one shown in figure 5.  The curves indicate that increases in vertical speed, c, lead to decreases

in the  probability of simultaneous longitudinal and vertical overlap.  This consequence is

mathematically clear from approximation (3e); and it is intuitively reasonable, since: (1) the

probability of simultaneous overlap varies in the same sense as the duration of the time period in

which the airplanes are in vertical overlap; and (2) for constant aircraft height h and varying vertical

speed  c, the time spent in vertical overlap, 2h'c (= te !tb), is simply one branch of a hyperbola.  Thus

the shape of the curves in figure 6 is not surprising.  What is especially noteworthy is that all six

curves become virtually coincident once the climb or descent speed,  c, exceeds a few hundred feet

per minute.  At all vertical speeds except the smallest ones shown in the figure, the difference, a,

between the initial altitudes of the airplanes, has a negligibly small effect on the probability of

simultaneous overlap.

3.13 Figure 6 also suggests a means of minimizing risk.  If it is possible to choose “worst-

case” values of the parameters shown at the top of the spreadsheet in figure 5, and if such values

produce a graph similar to figure 6, then it should also be possible to choose a minimum acceptable

speed of climb or descent, i.e., a vertical speed that will reduce P(O), the probability of simultaneous

longitudinal and vertical overlap, to a value that is close to its minimum.  For example, in figure 6

we might set the minimum acceptable vertical speed (in feet per minute) to one-fifth of the initial

vertical  separation (in feet).  (Thus the airplanes would enter into vertical overlap no more than 5

minutes after the start of the climb or descent.)  This minimum vertical speed could then be

incorporated into the rules for executing an ITP.



21

0 

0.5 

1 

-3 0 3 

        

Figure 4: Standard normal distribution function

M(x)

x

R1

R2

R3



22

Figure 5: Computation of P(O)

Computation of the probability of simultaneous longitudinal and vertical overlap

1meter = 3.2808399  feet
1 nmi = 6076.1154856  feet

a = 1000  feet = 0.1645788 nmi
h = 65  feet = 0.0106976 nmi
c = 200  ft/min = 1.9749460 kt
tb = (a !h)'c hr = 0.0779167 hr
te = (a + h)'c hr = 0.08875 hr

l = 0.03  nmi

m = 30  nmi

k = 0.5 

b = 0.0001 

σ = 35 kt

σtb = 2.727083333 
(m + l)'(σtb) = 11.011764706 <--sumarg

Ψ [(m + l)'(σtb)] = 11.011764706 <--psisumarg NA <--tpsisumarg
(km + l)'(σtb) = 5.511382735 <--sumargk

Ψ [(km + l)'(σtb)] = 5.511382738 <--psisumargk 5.511382738 <--tpsisumargk
σte = 3.106250000 

(m !l)'(σte) = 9.648289738 <--difarg
Ψ [(m !l)'(σte)] = 9.648289738 <--psidifarg NA <--tpsidifarg

(km !l)'(σte) = 4.819315895 <--difargk
Ψ [(km !l)'(σte)] = 4.819316034 <--psidifargk 4.819316034 <--tpsidifargk

(b !k)'(mk(1!k)) = -0.066653333 
(1 !b)'(m (1!k)) = 0.066660000 

b'(km) = 0.000006667 
Ψ(0) = 1'%(2π) = 0.398942280 

P(O) = 1.24e-06 <--po
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4 Lateral Overlap

4.1 Airplanes that participate in an ITP are expected to navigate by using the global

navigation satellite system (GNSS).  Such airplanes ordinarily experience very small lateral

deviations from the center lines of their planned routes of flight.  However, in order to account for

the possibility of operational errors, analysts have sometimes modeled a GNSS-equipped airplane’s

lateral deviation from its center line, at any randomly chosen moment, as a normal-double-

exponential (NDE) random variable, typically called Y.  The NDE density function is then a

weighted sum of a normal density with mean 0 and standard deviation σL , and a double exponential

density with parameter 1'λ.  The weighting parameter – a number in the interval [0, 1] – is usually

called α.  Adapting a formula from reference 10.2 – for the special case in which planned lateral

separation is 0 nmi – we find that if two airplanes with wingspan w are assigned to the same route,

and both airplanes’ lateral deviations are described by the NDE density function

  = ,f
Y

( y)
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σ
L

2π
e
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y 2
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L %
α

2λ
e
&
*y*
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then their lateral overlap probability,  p0, is given by

p0  =  (1&α)2 2Φ
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5 The probability of a nose-to-tail collision

5.1 Let  CNT  denote the event in which the aircraft experience a nose-to-tail collision.

CNT  occurs if and only if  a1 and a2 enter into longitudinal overlap during a period in which they are

already in vertical and lateral overlap.  Therefore, if E3 or E4 occurs – i.e., if the airplanes are already

in longitudinal overlap when  a2 begins its change of altitude – then a nose-to-tail collision cannot

possibly occur.  As was noted in paragraph 2.9,  no longitudinal overlap occurs when E1 or E6 occurs;

and thus, again, we conclude that a nose-to-tail collision is impossible.  We are left to find the

probability of a nose-to-tail collision when either E2 or E5 occurs.

5.2 The probability that the airplanes enter into longitudinal overlap during their period

of vertical overlap  is P(tb  # Tb  # te) = P(C4 c C5).  Since the Ei 1 Cj are mutually disjoint, the

probability that one of  E2 or E5 occurs, and that one of C4 or C5 also occurs, is P([E2 cE5]1[C4 c C5])

=  P(E2 1 C4) + P(E2 1 C5) + P(E5 1 C4) + P(E5 1 C5).  Recalling results from paragraphs 3.3.3, 3.3.4,

3.6.3 and 3.6.4, we rewrite this sum of probabilities as
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5.4 Applying equation (4c) to the first and second lines of this last expression, applying

equation (4a) to its third and fourth lines, and remembering that Ψ(0) = , we write the1' 2π

probability of entry into longitudinal overlap during a period of vertical overlap, as

P([E2 cE5]1[C4 cC5])  =  P(E2 1 C4) + P(E2 1 C5) + P(E5 1 C4) + P(E5 1 C5)  =
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5.5 If all arguments of  Ψ in equation (6a) are greater than 6, we can safely apply the

approximation Ψ(x) . x to the right side of the equation, and write P([E2 cE5]1[C4 cC5])  .
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5.6 The probability that a1 and a2 are in lateral overlap at the instant when they enter into

longitudinal overlap is p0, because that is the probability that they are in lateral overlap at any

randomly chosen instant.  Thus P(CNT )  = [P(E2 1 C4) + P(E2 1 C5) + P(E5 1 C4) + P(E5 1 C5)] @ p0 



29

=  
b&k

mk (1&k)
@ σ t

b
Ψ

km&l

σ t
b

& σ t
e
Ψ

km&l

σ t
e

 ; (7a)%
1&b

m(1&k)
@ σ t

b
Ψ

m&l

σ t
b

& σ t
e
Ψ

m&l

σ t
e

%
b

mk
@
σ (t

e
& t

b
)

2π
@ p

0

and when all arguments of Ψ in equation (7a) are greater than 6, we can safely approximate

P(CNT )  .   . (7b)
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6 The probability of a top-to-bottom collision

6.1 Aircraft a1 and a2 experience a top-to-bottom collision if and only if they enter into

vertical overlap during a period in which they are already in longitudinal and lateral overlap.  If  E1

or E6 occurs, there is no possibility of a longitudinal overlap, and, therefore, no possibility of a top-

to-bottom collision.  We are left to find the probability of a top-to-bottom collision when  E2,  E3,

E4  or E5 occurs.

6.2 The probability that the airplanes enter into vertical overlap during a period of

longitudinal overlap is  P(Tb  # tb  # Te )  =  P(C2 c C3).  Since the Ei 1 Cj are mutually disjoint, the

probability that one of  E2,  E3,  E4  or E5 occurs, and that one of  C2 or C3 also occurs, is

P([E2 cE3 cE4 cE5]1[C2 c C3]) =

P(E2 1 C2) + P(E2 1 C3) + P(E3 1 C2) + P(E3 1 C3)

+  P(E4 1 C2) + P(E4 1 C3) + P(E5 1 C2) + P(E5 1 C3).

Recalling results from paragraphs  3.3.1,  3.3.2,  3.4.1,  3.4.2,  3.5.1,  3.5.2,  3.6.1  and  3.6.2, we

rewrite this sum as
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6.3 As in paragraph 3.7.4 we let w =  and z =  ; and we then rewrite the
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b

&l&u

σ t
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probability of entry into vertical overlap during a period of longitudinal overlap as
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6.4 Again applying equation (4c) we write the probability of entry into vertical overlap

during a period of longitudinal overlap as

(1&b)σ t
b

2m(1&k)
2Ψ

m%l

σt
b

&
m%l

σt
b

& 2Ψ
km%l

σt
b

&
km%l

σt
b

% 2Ψ
km&l

σt
b

&
km&l

σt
b

& 2Ψ
m&l

σt
b

&
m&l

σt
b

%
bσ t

b

2km
2Ψ

km%l

σ t
b

&
km%l

σ t
b

& 2Ψ
km&l

σ t
b

&
km&l

σ t
b



32

=  
1&b

2m(1&k)
2σ t

b
Ψ

m%l

σt
b

& (m%l)& 2σ t
b
Ψ

km%l

σt
b

% (km%l)

% 2σt
b
Ψ

km&l

σt
b

& (km&l)& 2σt
b
Ψ

m&l

σt
b

% (m&l)

%
b

2km
2σ t

b
Ψ

km%l

σ t
b

& (km%l)& 2σ t
b
Ψ

km&l

σ t
b

% (km&l)

=  
1&b

2m(1&k)
2σ t

b
Ψ

m%l

σt
b

& 2σ t
b
Ψ

km%l

σt
b

% 2σt
b
Ψ

km&l

σt
b

& 2σt
b
Ψ

m&l

σt
b

%
b

2km
2σ t

b
Ψ

km%l

σ t
b

& 2σ t
b
Ψ

km&l

σ t
b

& 2l

=  σ t
b
Ψ

km%l

σ t
b

& σ t
b
Ψ

km&l

σ t
b

@
b

km
&

1&b

m(1&k)

+    !  
1&b

m(1&k)
σ t

b
Ψ

m%l

σt
b

& σt
b
Ψ

m&l

σt
b

bl

km

  =  +  !  . (8a)
b&k

mk (1&k)
σ t

b
Ψ

km%l

σ t
b

&σ t
b
Ψ

km&l

σ t
b

(1&b)

m(1&k)
σ t

b
Ψ

m%l

σt
b

&σt
b
Ψ

m&l

σt
b

bl

mk

6.5 If all arguments of  Ψ in equation (8a) are greater than 6, we can safely apply the

approximation Ψ(x) . x to the right side of the equation, and write P([E2 cE3 cE4 cE5]1[C2 c C3]) .
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6.6 Let CTB denote the event in which a1 and a2 experience a top-to-bottom collision.  The

probability that a1 and a2 are in lateral overlap at the instant when they enter into vertical overlap is

p0, because that is the probability that they are in lateral overlap at any  randomly chosen instant. 
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Using equation (8a) we conclude that P(CTB )  = P([E2 cE3 cE4 cE5]1[C2 c C3]) @ p0  =

   . (9a)
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When all arguments of Ψ in equation (9a) are greater than 6, we can safely use formula (8b) instead

of (8a), and approximate P(CTB)  .  . (9b)
bl

mk
@p

0

6.7 If a1 and a2 experience a simultaneous longitudinal and vertical overlap, that event

can occur in exactly one of two possible ways: either the airplanes enter into longitudinal overlap

when they are already in vertical overlap, or they enter into vertical overlap when they are already

in longitudinal overlap.  Equations (6a) and (6b) give us the probability of entry into longitudinal

overlap during a period of vertical overlap; and equations (8a) and (8b) give the probability of entry

into vertical overlap during a period of longitudinal overlap.  Adding the right sides of equations (6a)

and (8a), we find that the probability of a simultaneous overlap is
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Since this last expression is exactly the same as the right side of equation (3c), we have just shown

that the results of this section and the preceding section are consistent with those of section 3.

7 The probability of a side-to-side collision

7.1 Recall that airplanes a1 and a2 are assigned to the same route, and p0 denotes the

probability that, at any randomly chosen moment during their flights, they have laterally overlapping

positions.  We now let  n0 denote the average rate, in occurrences per hour, at which such airplanes

enter into lateral overlap.
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7.2 Let  k0  kts denote the average lateral passing speed of airplanes that are assigned to

the same route.  Then 2w'k0  hrs is the average duration of a lateral overlap, i.e., the average time

that such airplanes spend in overlap when they pass each other laterally.  Since 2w'k0 is a relatively

small number, we can approximate  p0 . n0@(2w'k0), from which it immediately follows that

n0 . (p0@k0)'(2w).  Since the airplanes that participate in an ITP are expected to navigate by using

the GNSS, we adopt an estimate of  k0 from reference 10.4.

7.3 Viewing entries into lateral overlap as randomly occurring events in a Poisson

process, we recall that the probability of such an event during a period lasting τ hours, is .1&e
&n0τ

We take the period to be the interval during which the airplanes are simultaneously in longitudinal

and vertical overlap; and since that is a small fraction of an hour, and  n0 is also a small number, we

can be confident that n0τ is small.  Therefore, it makes sense to approximate the exponential function

by the first two terms of its Taylor series expansion, and take   . 1! [1! n0τ ] =  n0τ.1&e
&n0τ

7.4 Airplanes a1 and a2 experience a side-to-side collision if and only if they enter into

lateral overlap during a period in which they are already in both longitudinal and vertical overlap.

Having estimated a value for n0, we next estimate the average duration of a simultaneous

longitudinal and vertical overlap in order to compute the probability of a side-to-side collision.

7.5 As we see from the table in paragraph 3.2, the duration of the period of simultaneous

overlap may be a random variable.  Indeed, that is the case whenever C2, C4, or C5 occurs.  When C2

occurs, the period lasts Te !tb hrs; when C4 occurs, it lasts Te !Tb hrs; and when C5 occurs, it lasts

te !Tb hrs.  The duration of simultaneous overlap is the constant te !tb hrs only when C3 occurs.

7.6 The following table gives the duration of simultaneous longitudinal and vertical

overlap for each of the twelve events Ei 1 Cj for which such overlap occurs.

Cj : C2 C3 C4 C5

Ei Tb Te Te !tb te !tb Te !Tb te !Tb

E2 &l&U

V

l&U

V

l&U

V
& t

b

te !tb l&U

V
&

&l&U

V
'

2l

V
t
e
&

&l&U

V

E3 0 &l&U

V

&l&U

V
& t

b

te !tb (no simultaneous

overlap)

(no simultaneous

overlap)

E4 0 l&U

V

l&U

V
& t

b

te !tb (no simultaneous

overlap)

(no simultaneous

overlap)

E5 l&U

V

&l&U

V

&l&U

V
& t

b

te !tb &l&U

V
&

l&U

V
' &

2l

V
t
e
&

l&U

V
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For example, when E2 occurs, Te = ; and when C2 occurs, the duration of the overlap interval
l&U

V

is Te !tb .  Therefore, when E2 1 C2 occurs, the overlap duration is .
l&U

V
& t

b

7.7 We recall that Ei 1 Cj occurs if and only if the random vector (U, V) takes a value in

the set Ai,j ; and we let g(u,v) denote the duration of the simultaneous longitudinal and vertical

overlap when (U, V) assumes any particular value (u, v).  Then 

g(u,v)  =     

l&u
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c A
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c A
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c A
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c A

5,3

2l

v
if (u,v) 0 A
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e
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&l&u

v
if (u,v) 0 A

2,5

t
e
&

l&u

v
if (u,v) 0 A

5,5

0 otherwise .

We then estimate the unconditional mean value of the duration of simultaneous longitudinal and

vertical overlap by    =m
4

&4 m
4

&4
g(u,v) f

U,V
(u,v)dvdu

  .j
i ' 2,...,5
j ' 2,3

mmAi,j

g (u,v) f
U,V

(u,v)dvdu% j
i ' 2,5
j ' 4,5

mmAi,j

g (u,v) f
U,V

(u,v)dvdu

This unconditional average duration accounts for all possible values of (U, V), including those –

nearly all of them – for which the duration is 0 – i.e., those arising from ITP executions in which no

simultaneous overlap occurs!  However, in estimating the probability of a side-to-side collision, we

are not concerned with the unconditional mean value of the duration of simultaneous overlap, but

rather with the mean duration of those overlaps that do occur.  Therefore, we divide the

unconditional mean value by the probability of simultaneous longitudinal and vertical overlap, and

estimate the conditional mean duration of simultaneous overlap by



36

 . (10)
1

P(O)
j

i ' 2,...,5
j ' 2,3

mmAi,j

g (u,v) f
U,V

(u,v)dvdu % j
i ' 2,5
j ' 4,5

mmAi,j

g (u,v) f
U,V

(u,v)dvdu

7.8 Though it is possible to evaluate all of the integrals in formula (10), we save a great

deal of effort by adopting a very simple – and conservative – estimate for the mean duration of a

simultaneous longitudinal and vertical overlap.  We first note that the duration of the simultaneous

overlap cannot exceed the duration of either of its “component” overlaps.  That is, the duration of

the simultaneous overlap is necessarily less than or equal to Te  !Tb  (the duration of the longitudinal

overlap), and is necessarily less than or equal to te !tb  (the duration of the vertical overlap).  Since

the simplifying assumptions of paragraph 2.10 give us a constant duration for the period of vertical

overlap, we greatly simplify the computation by substituting that value for g(u,v) in all eight of the

integrals of formula (10) where it doesn’t already appear.  Since g(u,v) # te !tb  for all (u,v) in the

relevant sets  Ai,j , we can be sure that we thereby obtain an overestimate of the time period in which

a side-to-side collision may occur.  That is,  

1
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(u,v)dvdu

=    =  te !tb   =   2h'c.
t
e
& t
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P(O)
@P(O)

7.9 Let CSS  denote the event in which a1 and a2 experience a side-to-side collision.  The

probability of a side-to-side collision is the probability that a simultaneous longitudinal and vertical

overlap occurs, and that an entry into lateral overlap occurs during that simultaneous longitudinal

and vertical overlap.  Since the Reich model assumes that an aircraft’s movement in each dimension

is independent of its movement in the other two dimensions, the entry into lateral overlap is

independent of the occurrence of a simultaneous longitudinal and vertical overlap.  We estimate the

probability of entry into lateral overlap, during any period of duration  te !tb    =  2h'c,  to be

n0@(te !tb)  =  2 n0 h'c.  Using approximation (3d) to the probability of simultaneous longitudinal and

vertical overlap, we write P(CSS) . n0 @ (te !tb)@P(O) . . (11)
2n

0
h

c
@

b

mk
l%
σ (t

e
& t

b
)

2π

7.10 At the risk of mixing data from different sources, we cite parameter values from

references 10.3 and 10.4 in order to illustrate the computation of a value for n0.  Letting  w =

0.032 nmi,  α = 0.00564,  σL = 0.0232 nmi, and  λ = 0.038 nmi – all of which are empirically derived
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values cited in reference 10.3 – equation (5) (of this report) yields  p0  =  0.6686.  Following the

method described in reference 10.4, we find that if a1 and a2 are both navigating by GNSS, their

relative cross-track speed is k0  =  @ 0.7838  =  1.10846 (kts).  We then compute  n0  . (p0@k0)'(2w)2

= 11.58  (occurrences per hour).

8 Collision probability

8.1 A basic principle of the model presented in this paper is that airplanes can collide in

only one of three ways: nose-to-tail, top-to-bottom, or side-to-side.  Letting  C  denote the event that

airplanes a1 and a2 collide, we write P(C) = P(CNT) + P(CTB) + P(CSS).  Substituting the right sides

of  equations (7b), (9b) and (11) for their left sides, and recalling approximation (3d), we estimate

P(C) .
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Remembering also that  n0  . ( p0 @ k0)'(2w), we see that   . ; and so we can rewrite
2n

0
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p
0
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formula (12a) as P(C)  .  , (12b)p
0
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@Ρ(O)

or as  P(C)  .  . (12c)p
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8.2 The parameter values used in figure 5 were chosen, in part, to show the possibility

of computing P(O) even when some of the arguments of  Ψ are less than 6.  However, in most cases

we can expect  a2’s vertical speed to be significantly greater than 200 feet per minute.  Figure 7

shows a spreadsheet in which the parameter values are the same as those of figure 5, except that the

vertical speed,  c, is set to 400 feet per minute.  The spreadsheet computes collision probability,

which, in this case, is 5.15@10!7.  It is the sum of a nose-to-tail-collision probability of  3.37 @10!7, a

top-to-bottom-collision probability of 1.34 @10!7, and a side-to-side-collision probability of

0.44 @10!7.
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Figure 7: Probability of Collision

Probability of collision during an in-trail procedure (ITP)

 1 meter = 3.280839895 feet

 1 nmi = 6076.115486 feet

a = 1000 feet = 0.164579 nmi

 h = 65 feet = 0.010698 nmi

c = 400 ft/min = 3.949892 kt

tb =  (a!h)'c hr = 0.038958 hr

te =  (a+h)'c hr = 0.044375 hr

 l = 0.03 nmi

m = 30 nmi

k = 0.5

b = 0.0001

σ = 35 kt

 σtb = 1.363542 lateral overlap probability (as in SASP-WG/WHL /11-WP/5, with  S = 0):

(m+l)'(σtb) = 22.023529 w = 0.032 nmi

Ψ[(m+l)'(σtb)] = 22.023529 σL = 0.0232 nmi

(km+l)'(σtb) = 11.022765 λ =  0.038 nmi

Ψ[(km+l)'(σtb)] = 11.022765 α = 0.00564

 σte = 1.553125   α(1-α) = 0.005608

(m!l)'(σte) = 19.296579   exp(σL
2'2λ2) = 1.204869

Ψ[(m!l)'(σte)] = 19.296579  w'λ = 0.842105

(km!l)'(σte) = 9.638632  w'σL = 1.379310

Ψ[(km!l)'(σte)] = 9.638632 σL 'λ = 0.610526

(b!k)'(mk(1!k)) = -0.066653  core-core term: 0.663055

(1!b)'(m(1!k)) = 0.06666  tail-tail term: 0.000012

b'(mk) = 0.000007  core-tail term: 0.005530

Ψ(0) = 1'o(2π) = 0.398942 p0 = 0.668598

P(O) = 7.04e-07 (formula 3c)

relative cross-track speed for pairs of GPS airplanes (as in SASP WG/A/1-WP/6):

P(O) . 7.04e-07 (formula 3d)  sGPS = 0.7838

o2 = 1.414214

 P(CNT) . 3.37e-07 (formula 7b) k0 = o2@sGPS = 1.108461

 P(CTB) . 1.34e-07 (formula 9b)

 P(CSS) . 4.42e-08 (formula 11) n0 = 11.579909

 P(C) . 5.15e-07

 P(C) . 5.15e-07 (formula 12a)
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8.3 Figure 8 shows the effect of varying the parameters k and b.  In particular, we

consider four possible values of  mk,  the minimum acceptable longitudinal separation at the moment

when the climb or descent begins: 15 nmi, 18 nmi, 21 nmi, and 24 nmi.  For each of those values we

graph collision probability as a function of  b.  The figure shows that collision probability varies

linearly with b, which is exactly what we expect in view of approximation (12c).

8.4 Though U  may assume a value in (!mk, mk) for a variety of reasons – such as

equipment failure or  meteorological aberration – we expect the event {!mk < U < mk} to result

largely from human error, i.e., from “blunder”.  Since the values of b are expected to be small

numbers, it then makes sense to think of the probability b as closely approximating the “blunder

rate”.  Viewed in this way figure 8 shows the probability of collision for a range of blunder rates

extending from one blunder per million executions of the ITP to one blunder per hundred executions.

9 Collision rate

9.1 Collision risk is traditionally expressed in units of fatal accidents per flight hour, and

is compared to a target level of safety (TLS), which is a maximum acceptable estimated rate of  fatal

accidents per flight hour.  The operation discussed in this report involves planned separation in the

longitudinal dimension, but only random separation in the lateral dimension, and no separation in

the vertical dimension.  Thus the appropriate metric for the present discussion is more completely

stated as “fatal accidents per flight hour (that are) due to the loss of planned longitudinal separation”.

9.2 Suppose that for some given airspace there already exists an estimate,  r,  of the rate

of fatal accidents due to the loss of planned longitudinal separation, but that the estimate does not

account for the effect of climbs or descents such as those considered in this report.  Also suppose

that during some very long period of time – H  hours (presumably on the order of several decades)

– the airspace can be expected to experience n such climb or descent operations.  Then during that

time period we would expect such operations to give rise to  n @ P(C) collisions, or 2 n P(C) accidents.

During that period of time the airspace would have some average number  f  of active flights, and

would, therefore, generate  f  flight-hours per hour, or Hf  flight-hours in  H  hours.  So, during the

H-hour-long time period, the airspace would experience  Hfr  accidents that were not due to ITP

climb or descent operations, and 2nP(C) accidents that were due to such operations.  The total

number of accidents due to the loss of planned longitudinal separation would be Hfr +2nP(C); and

the accident rate, in traditional units, would be [Hfr  + 2nP(C)]'(Hf )  =  r + 2@(n'H) @[P(C)'f ]

accidents per flight-hour.  From this last expression it’s clear that the accident rate due to ITP climb

or descent operations would be  2@(n'H) @[P(C)'f ].  We also note that since the quotient  n'H is the

hourly rate of ITP climb or descent operations, the computed rate would be independent of the choice

of time period – as long as the period weren’t so short that we’d be unable to obtain a stable estimate

of  n'H.
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9.3 Suppose, for example, that an oceanic airspace experiences an average instantaneous

traffic load of  f = 30 flights.  Suppose also that the air navigation service provider (ANSP) that

operates the airspace restricts the use of the ITP to pairs of airplanes that both navigate by using the

GNSS, and that such airplanes’ lateral performance is similar to that of the airplanes studied in

reference 10.3.  The spreadsheet shown in figure 7 uses parameter values taken from that reference,

and is, therefore, relevant to this example.  The following table shows the numerical values plotted

in figure 8, which were obtained by re-computing the spreadsheet of figure 7 with four different

values of  k  and nine different values of b.

Probability of Collision, P(C), During the Execution of an ITP

b

mk = minimum initial longitudinal separation (nmi)

15 18 21 24

1e-02 5.150e-05 4.292e-05 3.679e-05 3.219e-05

5e-03 2.575e-05 2.146e-05 1.839e-05 1.609e-05

1e-03 5.150e-06 4.292e-06 3.679e-06 3.219e-06

5e-04 2.575e-06 2.146e-06 1.839e-06 1.609e-06

1e-04 5.150e-07 4.292e-07 3.679e-07 3.219e-07

5e-05 2.575e-07 2.146e-07 1.839e-07 1.609e-07

1e-05 5.150e-08 4.292e-08 3.679e-08 3.219e-08

5e-06 2.575e-08 2.146e-08 1.839e-08 1.609e-08

1e-06 5.150e-09 4.292e-09 3.679e-09 3.219e-09

Finally, suppose that r, the airspace’s estimated rate of accidents due to the loss of planned

longitudinal separation, is less than the target level of safety (TLS) T.  Then the airspace’s “budget”

for accidents due to ITPs is T !r ; and the ANSP can allow the use of ITPs as long as T !r  $
2@(n'H) @[P(C)'f ].  If the TLS is 5 @10!9 accidents per flight-hour, and  r is 3.5 @10!9 accidents per

flight-hour, then use of the ITP could be allowed as long as 1.5 @10!9  $ 2 (n'H)@P(C)'30 , or,

equivalently, as long as 2.25 @10!8 $ (n'H)@P(C).  Having estimated the value of b  – e.g., through

a hazard analysis, or through observation of the fleet’s performance during a period in which ITPs

were authorized (whether in an operational trial or in normal operation) –  the ANSP will be able to

estimate the rate at which the procedure can be tolerated.  For example, if b = 5 @10!6, and the

procedure is to be used with a minimum initial longitudinal separation of 15 nmi, then (as is shown

in the table) P(C) = 2.575 @10!8, and the airspace will meet its TLS as long as n'H #
(2.25 @10!8)'(2.575 @10!8) . 0.874.  In this example the ANSP can safely use ITPs as long as the rate

of utilization is limited to approximately seven times per eight hours, or 21 times per day.
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