

Space Weather Affecting Airlines During Solar Minimum

Joe Kunches Space Weather Consultant

jmk@kunches.net (+1) 720 708-7130

Post

Space Weather Writer, The Washington

March 8-9, 2017

Overview

- The Sun is quieting, space weather now changing
- Solar minimum means few very few Australia, U.S. Japan, China, Korea, ... Alerts, Warnings & Watches
- Many airlines have built ConOps based on the alerts
- Main threat in the next 5 years, is radiation to satellites, aircraft, and crew
- ICAO approved Sp Wx SARPS for amendment 78 of annex 3, planned for 2018 March 8-9, 2017 ISPACG/31 jmk@kunches.net

March 8-9, 2017

March 8-9, 2017

Periods with Kp >= 7

G3 Level

February 2015

(Month 75)

FIGURE 1 Scintillation map showing the frequency of disturbances at solar maximum. Scintillation is most intense and most frequent in two bands surrounding the magnetic equator, up to 100 days per year. At poleward latitudes, it is less frequent and it is least frequent at mid-latitude, a few to ten days per year.

GNSS-Based Services Improving

March 8-9, 2017

Good/Bad of Solar Minimum

- Good
- Very low flare and CME activity
- Systems GPS smooth sailing, sat comm too

- Bad
- High Galactic Cosmic Ray (GCR) counts, more radiation
- Systems HF loses high frequencies; satellite upsets more likely

March 8-9, 2017

Solar Cycles vs. Neutrons from Galactic Cosmic Rays

March 8-9, 2017

Photon cascade in lead plates in cloud chamber.

Maximum number of particles after passing through 10 cm of lead

Incident photon is several GeV

Neutrons Initiate Approximately 50% of the Dose

Table 5-I. Relative Biological Effectiveness

Radiation	RBE
X-rays	1
Gamma rays	1
Beta particles	1
Alpha particles	
(into the body)	10 to 20
Neutrons:	
For immediate radiation injury	1
For cataracts, leukemia and	
genetic changes	4 to 10

Source: Biophysical and Biological Effects, Ch.5, NATO AMedP-6(B)

March 8-9, 2017

Space Weather Radiation Hazards Outline

- Simple Tutorial
 - Cosmic Rays
 - Solar Radiation Storms
 - Earth's Influence
 - Magnetospheric Shielding
 - Atmospheric Shielding

Radiation Impacts on Airline Passengers

Space Radiation

- Composed of two major components

 Cosmic Rays
 - Always present and very energetic
 - Composed of many different elements
 - Intensity varies throughout 11 year Solar Cycle
 - Intensity varies with Solar Activity

Cosmic Rays

 Composed of many different Elements, such as Hydrogen Helium, Carbon, and Iron

• They cover a very wide range of energies

They are always present

Space Radiation

- Composed of two major components

 Cosmic Rays
 - Always present and very energetic
 - Composed of many different elements
 - Intensity varies throughout 11 year Solar Cycle
 - Intensity varies with Solar Activity
 - Solar Radiation Storms
 - Infrequent, very intense, with rapid onsets
 - Composed of many different elements
 - Origin strongly linked to Solar Activity

March 8-9, 2017 Variable energy and incompensation dependence

Space Radiation

- Earth's Influence on the radiation level

 Magnetic Field Shielding
 - Always present, but has holes!

Cosmic Ray Access

Open

Closed

Earth's Magnetic Shield to Cosmic Ray Access

Magnetic Poles: Open

Magnetic Equator: >15 GeV

Red bar varies as function of magnetic latitude

Space Radiation

- Earth's Influence on the radiation level
 - Magnetic Field Shielding
 - Always present, but has holes!
 - Geomagnetic Activity
 - Changes magnetic field shield location

Influence of Geomagnetic Activity on auroral boundary (geomagnetic poles expand with increased activity)

March 8-9, 2017

Space Radiation

- Earth's Influence on the radiation level
 - Magnetic Field Shielding
 - Always present, but has holes!
 - Geomagnetic Activity
 - Changes magnetic field shield location
 - Atmospheric Shielding
 - Upper atmosphere acts as a target
 - Lower atmosphere acts as absorbing shield

Two major radiation risks in exploratory missions

- SPE: sporadic, high dose. Shielding generally effective. Acute (deterministic) effects
 - GCR: chronic, low dose. Shielding poorly effective. Late (stochastic) effects

Dr. Durante 4th European SWW Bruxelles, Belgium, Nov 9, 2007 0.1

msv

100000

10000

1000

100

10

CNS syndrome Skin desquamation **GI** syndrome Fibrosis Haematopoietic syndrome Vomiting Nausea Lymphopenia Azoospermia Annual dose in Kerala (India) Annual dose limit for radiation workers CT abdomen/pelvis Annual dose on Earth Daily dose in LEO Pelvis X-ray film Annual cosmic rays at sea leve Chest X-ray film

What Can Airlines Do?

- Drop in altitude dose rate halves every 2 km lower
- Not likely, but if possible, fly at a lower latitude
- Be informed

 Open question – Is there appreciable radiation from composites?

ICAO Sp Wx SARPs

- Ratified March 2, 2017
- For inclusion in amendment 78 to annex 3
- Work in progress to draft supporting documents

Space Radiation Summary

- Two primary components
 - Cosmic Rays
 - Steady but variable w/solar cycle
 - Solar Radiation Storms
 - Rare, highly variable, and can be intense
- Earth's natural defenses
 - Magnetic field shields Earth
 - Makes calculations very complex
 - Geomagnetic Latitude dependent
 - Geomagnetic activity can expand poles
 - Atmosphere acts as target and as shield
 - Radiation strongly dependent upon altitude

ISPACG/31 jmk@kunches.net

Thanks to R. Zwickl for his contributions.

March 8-9, 2017

Additional Slides

March 8-9, 2017

ACREM Measurements during GLE60 on 15. April 2001 10 h 25 min

Space Weather and Aviation

Major SEP Events

From nitrates in polar ice sheets

- SEP (>30MeV) fluence from ice sheet data (McCracken, 2001)
 Open flux model from sunspot number (Solanki et al., 2000)
- Open flux derived from aa index (Lockwood et al., 1999)

DNA dsb visualized by immunofluorescence of γ -H2AX histone in human skin firbroblasts exposed to 2 Gy of ionizing radiation

iron

Cucinotta and Durante, Lancet Oncol. 2006

Issue Time: 2001 Nov 04 2045 UTC ALERT: Solar Radiation Alert at Aviation Flight Altitudes Conditions Began: 2001 Nov 04 2035 UTC Slide 7

Altitude (feet)	Solar proton effective dose rate (millisieverts/hour) *			
20 000	<0.0010			
30 000	0.0052			
40 000	0.019			
50 000	0.040			
60 000	0.060			
70 000	0.074			
80 000	0.088			

* Estimates at high latitude locations. Dose rates are based on near real-time GOES satellite readings and are recalculated every 3 minutes.

March 8-9 2017 Kyle Copeland & Wallace Friedberg Civil Aerospace Medical Institute, AAM-610

Effective Doses From Solar Radiation at 40 000 ft for Selected Solar Proton Events From January 1986 Through December 2001 (16 y)

Slide 9

			Total Effective Dose (mSv)			
Date	Event	Time (hh:mm)*	3 h	5 h	10 h	
Aug. 16, 1989	GLE 41	01:10	0.055	0.072	0.087	
Sept. 29, 1989**	GLE 42	08:35	0.26	0.42	0.59	
Oct. 19, 1989	GLE 43	20:30	0.074	0.17	0.41	
Oct. 22, 1989	GLE 44	03:25	0.15	0.19	0.23	
Oct. 24, 1989	GLE 45	10:25	0.14	0.37	0.64	
May 24, 1990	GLE 48	00:05	0.13	0.019	0.026	
Jun. 15, 1991	GLE 52	00:50	0.041	0.048	0.055	
Nov. 2, 1992	GLE 54	00:20	0.039	0.054	0.072	
Nov. 6, 1997**	GLE 55	08:00	0.15	0.26	0.39	
Jul. 14, 2000**	GLE 59	07:05	1.1	1.3	1.51	
Apr. 15, 2001**	GLE 60	07:35	0.73	0.97	1.1	
Apr. 18, 2001**	GLE 61	01:15	0.049	0.083	0.14	
Nov. 4, 2001**	GLE 62	03:20	0.082	0.12	0.17	
Dec. 26, 2001	GLE 63	01:35	0.069	0.081	0.090	

* Time that recommended maximum flight altitude is below 40 000 ft ** Dose rates are underestimated for more than 0.5 h

March 8-9, 2017 ISPACG/31 jmk@kunches.net Kyle Copeland & Wallace Friedberg Civil Aerospace Medical Institute, AAM-610