

ISPACG/32, Nada Fiji, 10-12 April 2018

# INMARSAT UPDATE ISPACG/32 APRIL 2018 q

Lisa Bee, Director Air Traffic Services Aviation Business Unit, Safety & Operational Services

> inmarsat aviation





# INMARSAT AVIATION





### **SOS: Classic Aero & SB-Safety**

Worldwide safety and operations to the cockpit using the L-band with premium reliability



## **Global Xpress**

Seamless, superfast broadband available globally. Unconstrained Ka-band ideally suited to larger, long haul aircraft with global cabin connectivity requirements

### **European Aviation Network**

A regional complement to GX. S-band satellite and complementary ground network over EU 28 states to meet the need across high traffic areas and airport hubs –ideal for **short/medium haul** aircraft

**Proven networks and continued investments** to ensure capacity and quality of service meets airline needs now – and in the future





## GLOBAL, INTEGRATED, FIT-FOR-PURPOSE NETWORKS ENABLE THE CORRECTLY CONNECTED AIRCRAFT

## Inmarsat Aviation is the only owner & operator of both L-band and K-band MSS







## THE FUTURE OF THE CONNECTED FLIGHT DECK FOR AIRLINE OPERATIONAL EFFICIENCY ADVANTAGES

The Connected Aircraft will enable better real-time decision making, better situational awareness, the ability to diagnose situations in real-time and even the potential to intervene. IP-based flight data streaming offers day to day operational benefits alongside improvements in safety and flight data recovery.







The connected aircraft revolution



- > An A380 generates 4 GB of data per flight
- > A B787 generates up to 500 GB of data per flight

= Up to 30TB of data per aircraft per month (10,000 x more than current generation)



## INMARSAT I3 – 20+ YEARS OF SERVICE

- Launched 1996-98
- Built by Lockheed Martin, Matra Marconi Space Payload
- Thousands of GMDSS Distress Calls carried
- Hundreds of millions of ADS-C messages carried
- 4x increase in NAT capacity, estimated \$3Bn saved by airlines in fuel, reduced CO2
- 3 of 4 I3s now approaching EOL, transitioning traffic to I4 constellation



## CONSTELLATION UPDATE

102

|                                  |                                       | 8 8 |
|----------------------------------|---------------------------------------|-----|
| IN FLIGHT                        |                                       |     |
| INMARSAT-                        | 3 Five satellites<br>launched 1996-98 |     |
| INMARSAT-<br>L-BAND              | 4 Four satellites<br>launched 2005-13 |     |
|                                  | F1<br>F2<br>F3<br>F4 (ALPHASAT)       |     |
| INMARSAT-                        | 5 Three satellites                    |     |
| KA-BAND                          | launched 2013-15                      |     |
|                                  | FI                                    |     |
|                                  | F2<br>F3                              |     |
| PLANNED                          |                                       |     |
| INMARSAT-<br>KA-BAND             | 5 F4                                  |     |
| EAN SATELLI<br>S-BAND            | re                                    |     |
| INMARSAT-<br>L- AND<br>KA- BANDS | 5 F1<br>F2                            |     |
|                                  |                                       |     |

Extract from Inmarsat PLC Annual Report and Accounts April 2017

#### ISPACG/32, Nada Fiji, 10-12 April 2018





Expected operational life

.

## TRANSITION TO THE 14 CONSTELLATION

- The first stage of the service migration will take place at the end of Q1 this year.
- Classic Aero has operated successfully over our I-4 satellites since 2009 and I4 is now the predominant carrier of FANS data
- Our primary objective is to ensure that the transition process is simple and seamless for our service providers and end-users.
- We have been working closely with terminal manufacturers to ensure that terminals can operate over the I-4 satellites with the minimum of user intervention.





## **13 TO 14 TRANSITION SCHEDULE**

The migration will take approximately 9 months to complete, commencing end of Q1 18. Our approach is to migrate these services satellite-bysatellite, starting with AOR-W

Our primary objective is to ensure that the transition process is simple and seamless for our service providers and end-users.

Please work with your terminal supplier to keep up to date with all Service Bulletins and Service Information Letters, which will advise on any necessary actions.







# CAPACITY INCREASES, GES UPGRADES & ENHANCEMENTS (1/2)

- 22<sup>nd</sup> November 2016: New frequency plan implemented on 3F1 IOR GES, adding an extra R600 channel
- 25<sup>th</sup> January 2017: Extra two T1200 channels in EMEA, plus two for APAC
- GES upgrades to v9.0.8: 6<sup>th</sup> June Paumalu, 8<sup>th</sup> June Fucino, 12<sup>th</sup> June Perth, 14<sup>th</sup> June – Burum
- 12<sup>th</sup> July: Extra R10.5k channel added to APAC at 09:53 UTC
- 18<sup>th</sup> July: Extra R channel added to APAC at Paumalu
- 25<sup>th</sup> July: Extra R10.5k channel activated in AMER and APAC
- 11<sup>th</sup> August: Reconfigured T600 & T1200 channels in AMER and APAC



## CAPACITY INCREASES, GES UPGRADES & ENHANCEMENTS (2/2)

Air-to-Ground Caller Line Identification (CLI): In response to ground voice network operator and ATS demand, following positive trials in Aug 17 Inmarsat enabled Classic GESs to deliver CLI. Objective(s):

- Less call failure due to CLI omission
- Ability to identify aircraft calling
- Supports rapid ground to air contact for future CONOPS further information]

GES upgrade 9.0.9: 27<sup>th</sup> Nov through 7<sup>th</sup> Dec



[See AC20-150B and ICAO Doc. 10038 'Satellite Voice Operations Manual' for

## CLASSIC AERO: ADS-C SURVEILLANCE SERVICES ~135,000 ADS-C REPORTS EVERY DAY: ~ 50,000,000 ADS-C REPORTS PER YEAR



inmarsat aviation

Current ADS-C Reporting Rates from 30' to 64" Multiple Inmarsat initiatives to support reduced oceanic separations with ADS-C surveillance I4 constellation predominant carrier of FANS data

-

2

-

-

100

.

-

-

-



## **ADS-C CAPABILITY AND PERFORMANCE\***

Coverage: Global and airline AOC Integrity: communication capability • Update rate: **Reliability:** 99.9 Availability: 99.9

ISPACG/32, Nada Fiji, 10-12 April 2018

- Accuracy: GPS position derived information transmitted to ATC facilities
  - Built-in conformance monitoring system based on two-way
    - Current aircraft avionics are certified to provide updated position reports as frequently as every 64 secs. Technically capable to provide every second.

\*PBCS will monitor aircraft operational function



## Satellite Communications Performance

- Slant range
- Total distance travelled by message
- Number of network nodes
- Processing time









## LEO NETWORK

| Air      |  |
|----------|--|
| TCAS ANT |  |





Ground



\*Boeing example. Airbus similar





## Longitudinal separation minima for RNP-4 and RCP 240

#### **Published: ICAO Doc 4444**

| Longitudinal | Surveillance | Other   |
|--------------|--------------|---------|
| 50 NM        | ADS-C        | ADS-C   |
| 30 NM        | ADS-C        | ADS-C   |
| 15 NM CDP    | ADS-C        | ADS-C I |

#### ICAO SASP developing: values may change with new collision risk modeling

| Longitudinal | Surveillance                      | Other    |
|--------------|-----------------------------------|----------|
| 20 NM*       | ADS-C $\approx$ 5 minutes         | New air  |
| < 20 NM**    | ADS-C $\approx$ (4 min to 64 sec) | New air  |
| 16***        | ADS-B $\leq$ 60/15 sec + ADS-C    | New air  |
| 14 NM***     |                                   | 14 NM f  |
|              |                                   | airspace |
|              |                                   | extent c |

\*SASP WG30/WP27 \*\* SASP WG30/Action Item 23 \*\*\*SASP WG30/WP09



- periodic reports each 32 minutes. RCP 240
- periodic reports each 12 minutes. RCP 240
- near simultaneous demand reports. RCP 240

- space monitoring criteria. New RCP 240 communication model.
- space monitoring criteria. New RCP 240 communication model.
- space monitoring criteria. New RCP 240 communication model.
- for airspace with little convective weather: requires additional, more stringent e performance criteria for lateral deviation events (# or % deviation events and of deviations).





## Lateral separation minima for RNP-4 and RCP 240

#### Published: ICAO Doc 4444, 5.1.4.2.1.6.b

| Lateral | Surveillance | Other    |
|---------|--------------|----------|
| 23 NM   | ADS-C/RSP180 | 5 NM LDE |

#### Under SASP development, values may change with additional collision risk modeling:

| Lateral | Surveillance                       | Other                                       |
|---------|------------------------------------|---------------------------------------------|
| 22 NM*  | ADS-B $\leq$ 60 secs, ADS-C/RSP180 |                                             |
| 16 NM   |                                    | 16 NM for a<br>airspace per<br>extent of de |

\* ICAO SASP WG30/WP19 ISPACG/32, Nada Fiji, 10-12 April 2018



conformance monitoring. RCP 240

E conformance monitoring.

pace monitoring criteria.

P 240 communication model (allocations based on observed nce)

airspace with little convective weather: requires additional, more stringent erformance criteria for lateral deviation events (# or % deviation events and leviations).



# SEPARATION STANDARDS SUMMARY

- GEO satellite system performance (latency, update rate, link budget, capacity, availability) compares favorably to LEO satellite systems.
- Much of the anticipated benefit in terms of reduced separation from ASEPS derives from requirements such as airspace monitoring, airspace performance, and external system configuration.
- Benefits from ASEPS minima can be achieved with either spacebased ADS-C or ADS-B to provide operators and ANSPs options that best fit different operational and business models.







#### ISPACG/32, Nada Fiji, 10-12 April 2018

## INMARSAT ADVANCED OCEANIC AIR TRAFFIC SERVICES









- Increased airspace capacity
- Increased safety
- Reduced fuel consumption
- Optimised air corridor usage taking weather and traffic into account
- Extended visibility beyond FIR boundaries (multiple ANSP regions)
- Short Timescales for uptake ~ No equipage change, minimal touch
- Longer-term ~ SB-S equipage for advanced lightweight, cost-effective, proven surveillance and satellite communications capabilities



# **INMARSAT ADVANCED SURVEILLANCE**

- Dynamic ADS-C position reports, e.g., 10min, 3min, 2 min, 64 sec (Classic Aero)  $\bullet$ 
  - Dynamic ADS-C reports down to 15 sec (SwiftBroadband-Safety)
- Global Tracking Database Real-Time Tracking Information for ANSP & Operators  $\bullet$
- Direct Controller Pilot Communications (Sat Voice) at <15sec intervention time •
- Subscription based flat-fee cost enabling predictable cost
- Supported by all existing Inmarsat Classic and SB-S equipped aircraft  $\bullet$ 
  - Installed on +90% of transoceanic flights



# HOW MUCH DOES IT COST?

- Inmarsat customers subscribe to a bundled service that supports all aircraft communications needs: AOC ACARS, CPDLC, ADS-C, Sat Voice, etc.
- ADS-C position reports are very small and use a small proportion of total data
- The average Atlantic crossing requires that aircraft provide position reports using SatCom for approximately 3 hours included in communications bundle



# SB-S - HIGH SPEED, HIGH VOLUME COMMUNICATIONS

#### SwiftBroadband-Safety



kbps

31

kbps

10.5

kbps

2.4

kbps

0.3

**Classic Aero** 

VDL

ISPACG/32, Nada Fiji, 10-12 April 2018

HF

0011100101001110 100011011110001101111 1011100111011100111011 1001001010100100101010010010010010000 10101101001010101001010101010001 01101001010110100101010101 01110011110111001111 000011000000001100 01111111110







## FANS 1/A OVER SBB EVALUATION – PROGRESS SINCE DLUF (SEPT 17)

- Hawaiian FANS Evaluation eight B767, continued good performance overall. Two A321 neo now in operation, one in scheduled service
- United Airlines FANS installs (3 of 4 complete)
  - Three B767 aircraft now in operation mainly on NAT, fourth awaited. Good performance
- Two Shenzhen A320s operational began June/July, 2017: 'ACARS over SBB' – good performance
- Two Shenzhen Boeing 737 AOC ACARS planned



ISPACG/32, Nada Fiji, 10-12 April 2018



olete) NAT,











## INMARSAT I4 NETWORK SUPPORTING SB-SAFETY



ISPACG/32, Nada Fiji, 10-12 April 2018



internetworking

ADCC ACARS processing



## HAL B767/RC IMS (ARINC) PBCS PACIFIC REGION RCP & RSP MONITORING REPORT (2 YEARS)

| PBCS Monitoring Report                 |                       |                           |              |                            |              |
|----------------------------------------|-----------------------|---------------------------|--------------|----------------------------|--------------|
| Region ->                              | Pacific               | Period $\rightarrow$      | Multiple     |                            |              |
|                                        |                       | RCP                       |              |                            |              |
| Specification $\rightarrow$            | RCP 240               | Application $\rightarrow$ |              | CPDLC                      |              |
| Colour Key                             |                       | 95% RCP 240 benchmark     |              | 99.9% RCP 240<br>benchmark |              |
| Meets Criteria <del>&gt;</del>         | Transaction<br>Counts | АСР                       | АСТР         | АСР                        | АСТР         |
| Under Criteria but above<br>99.0% →    | (WILCO<br>Received)   | <=180 sec                 | <=120<br>sec | <=210 sec                  | <=150<br>sec |
| Under Criteria <del>-&gt;</del>        |                       | End-to-End                | Network      | End-to-<br>End             | Network      |
|                                        | ANSP/Co               | ntrol area (CTA)          |              |                            |              |
| FAA OAK (KZAK) July to Dec 2015        | 447                   | >99.5%                    |              | >99.5%                     |              |
| FAA OAK (KZAK) Jan to June<br>2016     | 1901                  | >99.0%                    |              | >99.0%                     |              |
| FAA OAK (KZAK) July to Dec<br>2016     | 2170                  | >99.0%                    |              | >99.0%                     |              |
| FAA OAK (KZAK) Jan to June<br>2017     | 2235                  | >99.0%                    |              | >99.5%                     |              |
| JCAB Fukuoka (RJJJ) Jan to Jun<br>2016 | e 211                 | 99.53%                    | 100%         | 99.53%                     | 100%         |
| JCAB Fukuoka (RJJJ) July to De<br>2016 | c<br>199              | 100%                      | 100%         | 100%                       | 100%         |
| JCAB Fukuoka (RJJJ) Jan to Jun<br>2017 | e 188                 | 98.94%                    | 99.47%       | 99.47%                     | 100.00%      |



| Regional PBCS Monitoring Report - RSP    |                 |                           |                         |  |  |  |
|------------------------------------------|-----------------|---------------------------|-------------------------|--|--|--|
| Region →                                 | Pacific         | Period →                  | Multiple                |  |  |  |
| RSP                                      |                 |                           |                         |  |  |  |
| Specification →                          | RSP 180         | Application $\rightarrow$ | ADS-C                   |  |  |  |
| Colur Key                                |                 | 95% RSP 180<br>benchmark  | 99.9% RSP 180 benchmark |  |  |  |
| Meets Criteria ->                        | Report          | ASP                       | ASP                     |  |  |  |
| Under Criteria but above<br>99.0% →      | Counts          | <=90 sec                  | <=180 sec               |  |  |  |
| Under Criteria <del>-&gt;</del>          |                 | End-to-End                | End-to-End              |  |  |  |
|                                          | ANSP/FIR - July | to December 2015 (C       | NG 35)                  |  |  |  |
| FAA OAK (KZAK)                           | 9467            | 97.0%                     | 99.0%                   |  |  |  |
| FAA Auckland (NZZO)                      | 325             | >98%                      | >99.0%                  |  |  |  |
| FAA Boeing (ACAT)                        | 26543           | >99%                      | >99.0%                  |  |  |  |
| FAA Fukuoka (RJJJ)                       | 1134            | >99%                      | 100.0%                  |  |  |  |
|                                          | ANSP/FIR - Jan  | uary to June 2016 (CV     | /G 36)                  |  |  |  |
| FAA OAK (KZAK)                           | 32830           | >97.0%                    | >99.0%                  |  |  |  |
| FAA Auckland (NZZO)                      | 711             | >98%                      | >99.0%                  |  |  |  |
| FAA Boeing (ACAT)                        | 76288           | >99.0%                    | >99.0%                  |  |  |  |
| FAA Fukuoka (RJJJ)                       | 3755            | >99.0%                    | >99.0%                  |  |  |  |
|                                          | ANSP/FIR - July | to December 2016 (C       | NG 37)                  |  |  |  |
| FAA OAK (KZAK)                           | 53226           | >96.0%                    | >98.0%                  |  |  |  |
| FAA Auckland (NZZO)                      | 990             | >97.0%                    | >99.0%                  |  |  |  |
| FAA Boeing (ACAT)                        | 78866           | >99.0%                    | >99.0%                  |  |  |  |
| FAA Fukuoka (RJJJ)                       | 4965            | >99.0%                    | >99.0%                  |  |  |  |
| ANSP/FIR - January to June 2017 (CWG 38) |                 |                           |                         |  |  |  |
| FAA OAK (KZAK)                           | 60062           | >96%                      | >98.0%                  |  |  |  |
| FAA Auckland (NZZO)                      | Null            | Null                      | Null                    |  |  |  |
| FAA Boeing (ACAT)                        | N/A             | N/A                       | N/A                     |  |  |  |
| FAA Fukuoka (RJJJ)                       | 4472            | 99.49%                    | 99.82%                  |  |  |  |

## **REMINDER: LATENCY TIMING POINTS**





# **OPERATOR/AIRCRAFT TYPE**





## AIRCRAFT FLIGHTS OPERATING AOC ACARS OVER SWIFTBROADBAND – INTEGRAL POSN REPORTING



#### ISPACG/32, Nada Fiji, 10-12 April 2018



• Aircraft not operating FANS ADS-C are monitored using integral posn reports





## FANS 1/A OVER SBB RECOMMENDATIONS

Comment period closed on Feb 12<sup>th</sup>, comments being reviewed.

### **Recommendation 1**:

That the FAA accepts FANS 1/A over SwiftBroadband as a viable medium for FANS 1/A operations in airspace which require application of RSP 180 and RCP 240 for reduced aircraft separations.

### **Recommendation 2:**

That the FAA consider advocating internationally, that aircraft using the SwiftBroadband sub-network are eligible for operations that require compliance to CPDLC RCP 240 and ADS-C RSP 180 specifications supporting reduced separations.











# INMARSAT DESIGNED, OWNED AND OPERATED



nmarsat M2MAP: Operating normally



## lisa.bee@Inmarsat.com

